Topics in Combinatorics IV, Homework 2 (Week 2)

Due date for starred problems: Friday, October 20, 6pm.

- **2.1.** Let n be a positive integer, and let p be a prime.
 - (a) Show that the number of sequences of integers n_1, \ldots, n_p , where $1 \le n_i \le n$ and at least two n_i 's are distinct, is equal to $n^p n$.
 - (b) Show that all cyclic shifts of any sequence from (a) are distinct.
 - (c) Deduce that $n^p n$ is divisible by p.
- **2.2.** Consider a Drunkard's walk in the segment [0, n], i.e.:
 - the walk starts at interger $x = i, 0 \le i \le n$;
 - the probability of steps left and right is equal to 1/2;
 - the walk ends when the drunkard reaches either x = 0 or x = n.

Denote by p_i the probability the walk starting at x = i ends at point x = n.

- (a) Show that $p_i = \frac{1}{2}p_{i-1} + \frac{1}{2}p_{i+1}$ for every i = 1, ..., n-1.
- (b) Compute p_i for every *i*. *Hint*: you may need to recall some linear algebra.
- (c) Deduce from (b) the result of Example 1.15 (Drunkard's walk) from lectures.
- **2.3.** Find a bijection between the set of non-decreasing sequences $1 \le a_1 \le \cdots \le a_n$ such that $a_i \le i$ and lattice paths in the $n \times n$ square from (n, 0) to (0, n) lying above the main diagonal (and thus, show that the number of such sequences is C_n).
- **2.4.** (*) We say that a Dyck path has a *hill* at point 2i + 1 if it passes through points (2i, 0) and (2i + 2, 0). Denote by F_k the number of *hill-free* Dyck paths of length 2k, i.e. Dyck paths without hills.
 - (a) Compute F_k for $k \leq 5$.
 - (b) Show that numbers F_k satisfy the following equation:

$$C_n = F_n + \sum_{k=0}^{n-1} F_k C_{n-k-1},$$

where C_k are Catalan numbers.

Hint: consider the first hill from the left.

(c) Compute the generating function F(x) of the sequence (F_k) . Show that

$$F(x) = \frac{1}{1 - x^2 C(x)^2},$$

where C(x) is the generating function for Catalan numbers.