Topics in Combinatorics IV, Homework 3 (Week 3)

Due date for starred problems: Friday, November 3, 6pm.

3.1. (\star) Denote by $p_{k}(n)$ the number of Young diagrams $\lambda \vdash n$ with k rows. Show that $p_{1}(n)+$ $p_{2}(n)+\cdots+p_{k}(n)=p_{k}(n+k)$
3.2. (\star) A partition (or a Young diagram) $\lambda=\left(\lambda_{1}, \ldots \lambda_{k}\right) \vdash n$ is called self-conjugate if the height of i-th column of λ is equal to λ_{i} for every i. Show that the number of self-conjugate partitions of n is equal to the number of partitions of n with all summands odd and distinct.

Given a polygon, a dissection of it is a collection of mutually non-crossing diagonals (e.g., triangulation is an example of a dissection).
Given a convex ($n+2$)-gon P with one marked edge e, and a dissection of P with d diagonals, define a sequence $\varphi(P)=\left(a_{1}, \ldots, a_{m}\right)$ of integers recursively as follows.
Mark all edges $e=e_{0}, e_{1}, \ldots, e_{k}$ of the smallest polygon of the dissection containing e clockwise. By removing the edge e we obtain a sequence of dissected polygons P_{1}, \ldots, P_{k} (where P_{i} has an edge e_{i}), such that P_{i} and P_{i+1} have a unique common vertex (note that some of P_{i} may consist of a sigle edge e_{i}). Then define
$\varphi(P)=\left(k-1, \varphi\left(P_{1}\right),-1, \varphi\left(P_{2}\right),-1, \ldots, \varphi\left(P_{k-1}\right),-1, \varphi\left(P_{k}\right)\right)$, where $\varphi\left(P_{i}=e_{i}\right)=\emptyset$.
Example. $n=4, d=2$

$$
\varphi(P)=\left(2,-1, \varphi\left(P_{2}\right),-1, \varphi\left(P_{3}\right)\right)
$$

$\varphi(P)=(2,-1,1,-1,-1,1,-1)$
3.3. (a) Show that the resulting sequence $\varphi(P)=\left(a_{1}, \ldots, a_{m}\right)$ satisfies the following properties:

- $m=n+d+1$;
- $a_{i} \in \mathbb{Z}, a_{i}=-1$ or $a_{i}>0$ for every $i=1, \ldots, n+d+1$;
- the number of negative ones is precisely n;
- $\sum_{i=1}^{n+d+1} a_{i}=0$;
- $\sum_{i=1}^{l} a_{i} \geq 0$ for every positive integer $l \leq n+d+1$.

Hint: use induction on n and d.
(b) Show that some proper partial sum of $\varphi(P)$ vanishes if and only if the dissection contains a diagonal incident to the common vertex of e and its counterclockwise neighboring edge.
(c) Show that every sequence characterized by five properties in (a) can be obtained as $\varphi(P)$ for some dissection of P with d diagonals. Show that the map φ establishes a bijection between the set of dissections of an $(n+2)$-gon with d diagonals and the set of sequences characterized by five properties in (a).

Let $d<n$ be non-negative integers, consider a Young diagram $\lambda=(d+1, d+1,1, \ldots 1) \vdash n+$ $d+1$ (i.e., there are $n-d-1$ of ones). Given a sequence $\left(a_{1}, \ldots, a_{n+d+1}\right)$ as in Problem 3.3(a), we will now construct a SYT of shape λ by inserting numbers $1, \ldots, n+d+1$ into λ in turn.
Denote by b_{1}, \ldots, b_{d+1} all positive elements of the sequence, $b_{i}=a_{m_{i}}, m_{i}<m_{j}$ for $i<j$. Then the rules for inserting numbers are the following.

- If $a_{i}>0$, then i is inserted at the end of the first row (i.e., directly to the right of all elements which are already in the first row);
- if $a_{i}=-1$ and the number of -1 's preceding a_{i} is of the form $b_{1}+\cdots+b_{j}$ for some $j \geq 0$ then i inserted at the end of the second row;
- otherwise, i is inserted at the bottom of the first column.
3.4. (a) Show that the outcome of the procedure above is indeed a SYT of shape λ;
(b) Show that the construction above establishes a bijection between the set of SYT of shape λ and the set of sequences characterized in Problem 3.3(a).
3.5. Use the hook length formula and Problems 3.3 and 3.4 to show that the number of dissections of an $(n+2)$-gon with d diagonals is equal to

$$
\frac{1}{n+d+2}\binom{n+d+2}{d+1}\binom{n-1}{d}
$$

