Topics in Combinatorics IV, Solutions 5 (Week 5)

5.1. Let c_{n} denote the number of c-objects on n labeled nodes (as in the lectures), $n \geq 1$. Denote by $d_{n, k}$ the number of d-objects on n nodes with k components, i.e. the number of collections of $k c$-objects with total number of nodes being n (e.g., $d_{n, 1}=c_{n}$, and $\sum_{k} d_{n, k}=d_{n}$). Define

$$
d(x, y)=\sum_{n \geq 0} \sum_{k \geq 0} d_{n, k} \frac{x^{n}}{n!} y^{k}
$$

Show that $d(x, y)=e^{y \cdot c(x)}$, where $c(x)$ is the exponential generating function of $\left(c_{n}\right)$.
Solution: As we proved at the lectures, the number of d-object with fixed k and blocks of sizes n_{1}, \ldots, n_{k} is equal to

$$
\frac{1}{k!}\binom{n}{n_{1} n_{2} \ldots n_{k}} c_{n_{1}} \ldots c_{n_{k}} .
$$

To get $d_{n, k}$, we need to take a sum over $n_{1}+\cdots+n_{k}=n$:

$$
d_{n, k}=\sum_{\substack{n_{1}+\cdots+n_{k}=n \\ n_{1}, \ldots, n_{k} \geq 1}} \frac{1}{k!} \frac{n!}{n_{1}!n_{2}!\ldots n_{k}!} c_{n_{1} \ldots c_{n_{k}}},
$$

which implies that

$$
\frac{d_{n, k}}{n!}=\sum_{\substack{n_{1}+\cdots+n_{k}=n \\ n_{1}, \ldots, n_{k} \geq 1}} \frac{1}{k!} \frac{c_{n_{1}}!c_{n_{2}}}{n_{1}!} \frac{c_{n_{k}}}{n_{2}!} \cdots \frac{n_{k}!}{n_{k}!}
$$

and thus

$$
\begin{aligned}
& d(x, y)=\sum_{n \geq 0} \sum_{k \geq 0} d_{n, k} \frac{x^{n}}{n!} y^{k}=\sum_{n \geq 0} \sum_{k \geq 0} \sum_{\substack{n_{1}+\cdots+n_{k}=n \\
n_{1}, \ldots, n_{k} \geq 1}} \frac{y^{k}}{k!} \frac{c_{n_{1}}}{n_{1}!} \frac{c_{n_{2}}}{n_{2}!} \cdots \frac{c_{n_{k}}}{n_{k}!} x^{n}= \\
& =\sum_{k \geq 0} \frac{y^{k}}{k!} \sum_{n_{1}, \ldots, n_{k} \geq 1} \frac{c_{n_{1}} x^{n_{1}}}{n_{1}!} \frac{c_{n_{2}} x^{n_{2}}}{n_{2}!} \ldots \frac{c_{n_{k}} x^{n_{k}}}{n_{k}!}=\sum_{k \geq 0} \frac{y^{k}}{k!}\left(\sum_{m \geq 1} \frac{c_{m} x^{m}}{m!}\right)^{k}=\sum_{k \geq 0} \frac{y^{k}}{k!} c(x)^{k}=e^{y \cdot c(x)} .
\end{aligned}
$$

5.2. Recall that Stirling number of second kind $S(n, k)$ is defined as the number of set partitions of $[n]$ into k blocks.
(a) Show that $\sum_{n, k \geq 0} S(n, k) \frac{x^{n}}{n!} y^{k}=e^{y\left(e^{x}-1\right)}$.
(b) Prove the following recurrence relation:

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

Solution:

(a) This is an immediate corollary of Problem 5.1: let c-objects be sets, and d-objects be set partitions.
(b) Take any set partition of $[n]$ into k blocks, and consider the place of n. There are $S(n-1, k-1)$ partitions with n forming a single block. Further, if n is not alone in its block, we can remove it and get a partition of $[n-1]$ into k blocks. Any such partition can be obtained precisely k times (as n could be in any block), so the result follows.
5.3. (\star) Define the falling factorial $y_{(k)}=y(y-1) \ldots(y-k+1)=k!\binom{y}{k}$ for any $y \in \mathbb{R}$.
(a) Show that the number of surjective functions $f:[n] \rightarrow[k]$ is equal to $S(n, k) \cdot k!$.
(b) Show that for any $m, n \in \mathbb{N}$

$$
\sum_{k=0}^{n}\binom{m}{k} S(n, k) \cdot k!=m^{n}
$$

(c) Show that

$$
\sum_{k=0}^{n} S(n, k) y_{(k)}=y^{n}
$$

Solution:

(a) Denote $B_{i}=f^{-1}(i)$, then a function defines a set partition of $[n]$ into blocks B_{1}, \ldots, B_{k}, where different order of blocks leads to different fuctions. Therefore, the number of functions is equal to k ! times the number of set partitions with k blocks, i.e. $k!\cdot S(n, k)$.
(b) RHS is the number of all functions from $[n]$ to $[m]$. In the LHS the factor $\binom{m}{k}$ counts all k subsets of $[m]$, so $\binom{m}{k} S(n, k) \cdot k$! is the number of all surjective functions of $[n]$ onto k-element subsets of $[m]$. Every function from $[n]$ to $[m]$ is surjective onto its image (whose cardinality does not exceed n), so by taking sum over k from 0 to n we count all functions, as in the RHS.
(c) Both sides of the equality are polynomials in y. In every integer point $y=m$ the LHS is equal to

$$
\sum_{k=0}^{n} S(n, k) m_{(k)}=\sum_{k=0}^{n} S(n, k)\binom{m}{k} \cdot k!=m^{n}
$$

according to (b). Thus, the values of polynomials coincide at every integer point, and therefore they are equal to each other.
5.4. Define the signless Stirling number of the first kind $c(n, k)$ as the number of permutations $w \in S_{n}$ with cyc $(w)=k$, and Stirling number of the first kind as $s(n, k)=(-1)^{n-k} c(n, k)$. We define $c(0,0)=1$ and $c(n, 0)=c(0, n)=0$ for $n>0$.
(a) Show that $c(n, k)=c(n-1, k-1)+(n-1) c(n-1, k)$.
(b) Define the raising factorial $y^{(k)}=y(y+1) \ldots(y+k-1)=k!\binom{y+k-1}{k}$ for any $y \in \mathbb{R}$. Show that

$$
\sum_{k=0}^{n} c(n, k) x^{k}=x^{(n)}
$$

(c) Show that

$$
\sum_{k=0}^{n} s(n, k) x^{k}=x_{(n)}
$$

Solution:

(a) The solution is identical to the one of Problem 5.2(b), the only difference is that every $w \in S_{n-1}$ can be obtained precisely $n-1$ times by removing n from the cyclic notation of permutations from S_{n}.
(b) We use induction on n. For $n=1$ the identity becomes $c(1,1) x=x$, which holds since there is a unique permutation on one letter with one cycle.
Now, using (a) and the induction assumption, we can write

$$
\begin{aligned}
& \sum_{k=0}^{n} c(n, k) x^{k}=x \sum_{k=1}^{n} c(n-1, k-1) x^{k-1}+\sum_{k=0}^{n}(n-1) c(n-1, k) x^{k}= \\
& \quad=x \sum_{i=0}^{n-1} c(n-1, i) x^{i}+(n-1) \sum_{k=0}^{n} c(n-1, k) x^{k}=x \cdot x^{(n-1)}+(n-1) x^{(n-1)}=x^{(n)}
\end{aligned}
$$

(c) (a) implies that $s(n, k)=s(n-1, k-1)-(n-1) s(n-1, k)$. Now, proceeding as in (b), we obtain

$$
\begin{aligned}
& \sum_{k=0}^{n} s(n, k) x^{k}=x \sum_{k=1}^{n} s(n-1, k-1) x^{k-1}-\sum_{k=0}^{n}(n-1) s(n-1, k) x^{k}= \\
& \quad=x \sum_{i=0}^{n-1} s(n-1, i) x^{i}-(n-1) \sum_{k=0}^{n} s(n-1, k) x^{k}=x \cdot x_{(n-1)}-(n-1) x_{(n-1)}=x_{(n)}
\end{aligned}
$$

