Topics in Combinatorics IV, Homework 5 (Week 5)

Due date for starred problems: Friday, November 17, 6pm.

5.1. Let c_n denote the number of *c*-objects on *n* labeled nodes (as in the lectures), $n \ge 1$. Denote by $d_{n,k}$ the number of *d*-objects on *n* nodes with *k* components, i.e. the number of collections of *k c*-objects with total number of nodes being *n* (e.g., $d_{n,1} = c_n$, and $\sum_k d_{n,k} = d_n$). Define

$$d(x,y) = \sum_{n \ge 0} \sum_{k \ge 0} d_{n,k} \frac{x^n}{n!} y^k$$

Show that $d(x, y) = e^{y \cdot c(x)}$, where c(x) is the exponential generating function of (c_n) .

- **5.2.** Recall that Stirling number of second kind S(n, k) is defined as the number of set partitions of [n] into k blocks.
 - (a) Show that $\sum_{n,k\geq 0} S(n,k) \frac{x^n}{n!} y^k = e^{y(e^x-1)}$.
 - (b) Prove the following recurrence relation:

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

5.3. (*) Define the falling factorial $y_{(k)} = y(y-1) \dots (y-k+1) = k \binom{y}{k}$ for any $y \in \mathbb{R}$.

- (a) Show that the number of surjective functions $f: [n] \to [k]$ is equal to $S(n,k) \cdot k!$.
- (b) Show that for any $m, n \in \mathbb{N}$

$$\sum_{k=0}^{n} \binom{m}{k} S(n,k) \cdot k! = m^{r}$$

(c) Show that

$$\sum_{k=0}^{n} S(n,k)y_{(k)} = y^n$$

- **5.4.** Define the signless Stirling number of the first kind c(n,k) as the number of permutations $w \in S_n$ with cyc (w) = k, and Stirling number of the first kind as $s(n,k) = (-1)^{n-k}c(n,k)$. We define c(0,0) = 1 and c(n,0) = c(0,n) = 0 for n > 0.
 - (a) Show that c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k).
 - (b) Define the raising factorial $y^{(k)} = y(y+1)\dots(y+k-1) = k!\binom{y+k-1}{k}$ for any $y \in \mathbb{R}$. Show that

$$\sum_{k=0}^{n} c(n,k) x^{k} = x^{(n)}$$

(c) Show that

$$\sum_{k=0}^{n} s(n,k)x^{k} = x_{(n)}$$