Topics in Combinatorics IV, Homework 6 (Week 6)

Due date for starred problems: Friday, November 17, 6pm.

6.1. Recall that given $w \in S_{n}, \operatorname{exc}(w)$ is the number of excedances of w (i.e. places $i \in[n]$ such that $i<w_{i}$).
Complete the proof of Theorem 3.13: show that statistics des and exc are equidistributed.
6.2. Let $w=w_{1} w_{2} \ldots w_{n} \in S_{n}, n \geq 2 . i \in[n]$ is a weak excedance of w if $w_{i} \geq i$. Denote by wexc (w) the number of weak excedances of $w \in S_{n}$.
Show that statistics exc and wexc -1 are equidistributed.
6.3. (\star) Define Eulerian numbers $A(n, k)$ as the numbers of permutations $w \in S_{n}$ with $\operatorname{des}(w)=$ $k-1, k \leq n$.
Show that $A(n, k+1)=(n-k) A(n-1, k)+(k+1) A(n-1, k+1)$.
6.4. (\star) Let P_{1}, P_{2} be posets. A map $f: P_{1} \rightarrow P_{2}$ is called order-preserving if for any $a, b \in P_{1}$ the relation $a \leq_{P_{1}} b$ implies $f(a) \leq_{P_{2}} f(b)$.
(a) Let P be a finite poset, and let $f: P \rightarrow P$ be an order-preserving bijection. Show that f^{-1} is also order-preserving.
(b) Show that for infinite posets the statement of part (a) may not hold.

