Topics in Combinatorics IV, Homework 6 (Week 6)

Due date for starred problems: Friday, November 17, 6pm.

6.1. Recall that given $w \in S_n$, exc (w) is the number of excedances of w (i.e. places $i \in [n]$ such that $i < w_i$).

Complete the proof of Theorem 3.13: show that statistics des and exc are equidistributed.

6.2. Let $w = w_1 w_2 \ldots w_n \in S_n$, $n \ge 2$. $i \in [n]$ is a weak excedance of w if $w_i \ge i$. Denote by wexc (w) the number of weak excedances of $w \in S_n$.

Show that statistics exc and wexc -1 are equidistributed.

6.3. (*) Define Eulerian numbers A(n,k) as the numbers of permutations $w \in S_n$ with des $(w) = k - 1, k \le n$.

Show that A(n, k+1) = (n-k)A(n-1, k) + (k+1)A(n-1, k+1).

- **6.4.** (*) Let P_1, P_2 be posets. A map $f : P_1 \to P_2$ is called *order-preserving* if for any $a, b \in P_1$ the relation $a \leq_{P_1} b$ implies $f(a) \leq_{P_2} f(b)$.
 - (a) Let P be a finite poset, and let $f: P \to P$ be an order-preserving bijection. Show that f^{-1} is also order-preserving.
 - (b) Show that for infinite posets the statement of part (a) may not hold.