Topics in Combinatorics IV, Homework 7 (Week 7)

Due date for starred problems: Friday, December 1, 6pm.
7.1. Define a lattice axiomatically as a set L with two binary operations \vee and \wedge satisfying the following properties:

- Reflexive law: $x \vee x=x \wedge x=x$;
- Commutative law: $x \vee y=y \vee x$ and $x \wedge y=y \wedge x$;
- Associative law: $(x \vee y) \vee z=x \vee(y \vee z)$ and $(x \wedge y) \wedge z=x \wedge(y \wedge z)$;
- Absorption law: $x \vee(x \wedge y)=x$ and $x \wedge(x \vee y)=x$.

Show that this axiomatic definition of lattice is equivalent to the one from lectures: a lattice is a poset such that for any two elements meet and join exist.
7.2. (\star) Draw the Hasse diagram of the poset of order ideals of the Boolean lattice B_{3} (identifying elements at every vertex). Identify join-irreducible elements of $J\left(B_{3}\right)$. (The latter is actually a hint.)
7.3. (\star) Show that the set Π_{n} of set partitions of $[n]$ ordered by refinement is a lattice. Is it distributive?
7.4. Let P be a poset such that every chain and every antichain is finite. Show that P is finite. Hint: consider the set of minimal elements of P.

