Topics in Combinatorics IV, Homework 7 (Week 7)

Due date for starred problems: Friday, December 1, 6pm.

- **7.1.** Define a *lattice* axiomatically as a set L with two binary operations \lor and \land satisfying the following properties:
 - <u>Reflexive law</u>: $x \lor x = x \land x = x$;
 - <u>Commutative law</u>: $x \lor y = y \lor x$ and $x \land y = y \land x$;
 - <u>Associative law</u>: $(x \lor y) \lor z = x \lor (y \lor z)$ and $(x \land y) \land z = x \land (y \land z)$;
 - Absorption law: $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$.

Show that this axiomatic definition of lattice is equivalent to the one from lectures: a lattice is a poset such that for any two elements meet and join exist.

- **7.2.** (\star) Draw the Hasse diagram of the poset of order ideals of the Boolean lattice B_3 (identifying elements at every vertex). Identify join-irreducible elements of $J(B_3)$. (The latter is actually a hint.)
- **7.3.** (*) Show that the set Π_n of set partitions of [n] ordered by refinement is a lattice. Is it distributive?
- **7.4.** Let P be a poset such that every chain and every antichain is finite. Show that P is finite. *Hint:* consider the set of minimal elements of P.