Topics in Combinatorics IV, Solutions 8 (Week 8)

8.1. Show that the poset $J(P)$ of order ideals of a poset P is a distributive lattice.

Solution: First, we need to check that the union and intersection of order ideals is again an order ideal. This allow us to define $I \wedge J=I \cap J$ and $I \vee J=I \cup J$.
Indeed, if $y \in I \cap J$, then $y \in I$, If $x \in P, x \leq y$, then $x \in I, J$ as well, so $x \in I \cap J$. Now, assume $y \in I \cup J$, and $x \leq y$. Without loss of generality, we may assume $y \in I$. But then $x \in I$ as $x \leq y$, so $x \in I \subset I \cup J$.
The rest of the proof follows from the fact B_{n} is a distributive lattice: unions and intersections of sets satisfy both distributive laws.
8.2. Complete the proof of Lemma 4.30. Given a poset P with $|P|=n$, construct a map from the set of linear extensions of P to the set of saturated chains of $J(P)$ by taking $\varphi: P \rightarrow[n]$ to the chain $\hat{0}=\emptyset<\cdot I_{1}<I_{2}<\cdot \ldots<I_{n}=\hat{1}$, where $I_{j}=\varphi^{-1}([j])$. Show that this map is a bijection.

Solution: The map given in the assumptions is clearly order-preserving, so we just need to construct the inverse map. Assume there is a saturated chain $\emptyset<\cdot I_{1}<\cdot I_{2}<\cdot \ldots<I_{n}$ in $J(P)$. Since there are precisely n non-empty ideals in the chain and they all must have distinct cardinalities, we have $\left|I_{j}\right|=j$. Now define $\varphi(j)=I_{j} \backslash I_{j-1}$ (where $I_{0}=\emptyset$). This map is clearly inverse to the one given in the assumptions.
8.3. (\star) Let $w=26514871093 \in S_{10}$. Apply the RSK algorithm to w to obtain SYT P and Q.

Solution:

Step 1: 2 is inserted in the box $(1,1)$.
Step 2: 6 is inserted in the box $(1,2)$.
Step 3: 5 is inserted in the box $(1,2)$, and 6 is pushed down into the box $(2,1)$.
Step 4: 1 is inserted in the box $(1,1)$, and thus pushes down 2 into the second row, where it goes to the box $(2,1)$, and 6 is pushed down into the box $(3,1)$.
Step 5: 4 is inserted in the box $(1,2)$, and thus pushes down 5 into the second row, where 5 forms a new box $(2,2)$.
Step 6: 8 is inserted in the box $(1,3)$.
Step 7: 7 is inserted in the box $(1,3)$, and thus pushes down 8 into the second row, where 8 forms a new box $(2,3)$.
Step 8: 10 is inserted in the box $(1,4)$.

Step 9: 9 is inserted in the box $(1,4)$, and thus pushes down 10 into the second row, where 10 forms a new box $(2,4)$.

Step 10: 3 is inserted in the box $(1,2)$, and thus pushes down 4 into the second row, where it goes to the box $(2,2)$, and 5 is pushed down to the third row, where it goes to the box $(3,1)$, and 6 is pushed down to the forth row into the box $(4,1)$.

As a result, we get

8.4. (\star) Let (P, Q) be SYT of shape $\lambda=(4,2,2,2) \vdash 10$, where

$$
P=
$$

$$
Q=
$$

Construct $w \in S_{10}$ which is taken to the pair (P, Q) by the RSK algorithm.

Solution:

Step 10: box $(4,2) .9$ is pushed down by 7 (which is the maximal element in row 3 which is less than 9), which is pushed down by 5 , which is pushed down by 4 , so $w_{10}=4$.
Step 9: box $(4,1) .8$ is pushed down by 6 , which is pushed down by 2 , which is pushed down by 1 , so $w_{9}=1$.
Step 8: box $(3,2) .9$ is pushed down by 7 , which is pushed down by 5 , so $w_{8}=5$.
Step 7: box $(3,1) .8$ is pushed down by 6 , which is pushed down by 3 , so $w_{7}=3$.
Step 6: box $(1,4) . w_{6}=10$.
Step 5: box $(1,3) . w_{5}=7$.
Step 4: box $(2,2) .9$ is pushed down by 6 , so $w_{4}=6$.
Step 3: box $(2,1) .8$ is pushed down by 2 , so $w_{3}=2$.
Step 2: box $(1,2) . w_{2}=9$.
Step 1: box $(1,1) . w_{1}=8$.
Therefore, $w=89267103514$.

