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Topics in Combinatorics IV, Solutions 9 (Week 9)

9.1. Denote by r,(P) an insertion of x in a partial tableau P in the RSK algorithm. Suppose
that during r,(P) the elements z1, ..., x) are pushed down from rows 1,2, ..., k and columns
J1, 02y - - - Jr respectively. Then

(a) x <z < -+ < Tp;
(b) ji >+ > s
(c) if P =r,(P), then P/, < P;; for all i, .

Solution:

(a) This follows directly from the definition of the algorithm: x; pushes down z;11 if x; < z;41.

(b) Let x; be pushed down from column j;. Since P is a partial tableau, the element at the place
(i + 1, ;) is strictly larger than x;, and thus z; is inserted in the row ¢ + 1 in the column j; or
less, i.e. ji+1 < ]z

(c) This follows from (a): if P;; # P j, then the element P;; was pushed down from row i — 1,

and P; ; is pushed down to row i + 1, i.e. Pi”j =21 < x; = P;; in the notation of (a).

9.2. (a) Show that
d o h=#wes, v =1}
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(b) Show that

> h= WZ/QJ (272;) (2212!!
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Solution:

(a) By Theorem 5.11, w € S, is taken to (P,Q) if and only if w' is taken to (@, P). Thus,
w = w™ ! if and only if P = Q, so we got a bijection between involutions in S,, and SYT of
total size n.

(b) By (a), we just need to count the number of permutations in S,, of order 2 or 1. These are
precisely those which are decomposed into cycles of length 1 and 2.

Let an involution in S, contain precisely k cycles of length 2. Clearly, £ may vary from 0 to
n/2]. To define such an involution we need first to choose 2k numbers involved in 2-cycles
(there are (QT;C) possibilities), and then to choose how we split 2k into k groups of 2 (the number
of possibilities for the latter is given by the multinomial coefficient (2722’.]?.72) = 2(,%)2', = %
Note that the order of the 2-cycles is irrelevant (they all commute as they contain distinct
numbers), so we also need to divide by k!. Therefore, for given k we get (272) giklz:
with k& 2-cycles, and thus the total number of involutions in .S, is equal to

(e

k=0
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9.3. (A bit of linear algebra) Let A be a real symmetric indecomposable n x n matrix with all

off-diagonal elements being non-positive. Show that A is positive definite if and only if there
exists a vector v € R™ with all positive coordinates such that all coordinates of Av are also
positive.
Hint: use Perron-Frobenius Theorem which states that if all entries of a square indecom-
posable matrix are non-negative, then it has a simple positive eigenvalue p such that p has
maximal modulus amongst all eigenvalues of A, and all the coordinates of the corresponding
eigenvector are positive.

Solution:

Let m be the maximal positive diagonal value of a;; (or zero if all diagonal element are negative),
consider the matrix A’ = mI — A. All elements of A’ are non-negative, so, by the Perron-Frobenius
theorem, there is an eigenvalue p > 0 of A’ and eigenvector v = (v1,...,v,) such that A'v = pw
and v; > 0.

Observe that eigenvectors of A and A’ coincide: if Az = vz, then Az = (mI — A)x = (m — 7).
In particular, if the eigenvalues of A" are = p; > pg > -+ > p, (there are n real eigenvalues as
A’ is symmetric), then the eigenvalues of A are m —pu < m — pg < -+- < m — py, and thus m — p
is the smallest eigenvalue of A. If A is positive definite, then m — p > 0, and thus v satisfies the
assumptions: all v; > 0, and (Av); = (m — p)v; > 0.

Therefore, we proved that if A is positive definite then there exists a vector v € R™ with all positive
coordinates such that all coordinates of Av are also positive.

Now assume that such a vector exists (call it h) and A is not positive definite. Let, as before, v be
an eigenvector for the minimal eigenvalue of A (which is less or equal than zero), we can assume
v has all coordinates positive as shown above. We are going to deduce a contradiction from the
coexistence of h and v.

The proof below follows the ideas of Theorem 6.1 (and, in particular, it also provides a proof of the
implication (2)—(1) of Theorem 6.1). Of course, this is one of possible proofs only, there exist pure
linear-algebraic proofs as well.

Since m — pu < 0, Av has all coordinates negative or zero, and thus (v, A;) = v; < 0 for any i, where
A, is the i-th row of A.

Let u = ug = cv for ¢ > 0 large enough (we will specify what ¢ should be equal to later). Consider
the following iterative process (similar to the Cartan firing game with initial configuration u, see
Section 6.2 of lectures): choose one i such that (ug); > a;;, and define up11 = up — A;. Observe
that we have the following:

(uk+1,h) = (uk — Ai,h) = (uk, h) — (AZ', h) < (uk,h) — M,

where M = min(A;, h) = min(Ah); > 0. Therefore, after each step the inner product (ug,h)
j j

decreases by at least M > 0, so after a sufficiently large number of steps it will become negative.
On the other hand, all coordinates of uj are non-negative for every k: this is true for ug, and the
property is preserved at each step — if up11 = up — A;, then (ug41)i = (ug)i — ai; > 0 by the
choice of 4, and (wp11); = (ug); — aij > (ug); > 0 for i # j since all off-diagonal elements of A are
non-positive. Thus, both u and h have all coordinates non-negative, and therefore (uy, h) > 0 for
all k. The contradiction shows that there exists ko such that (ug,); < a; for all ¢, so the Cartan
firing is finite. In particular, we get

(Upy,u) <n-m- m;ax{(u)z} =cnm mlax{(v)z}



Consider now (ugy1,u). We have
(U1, u) = (up — Aj,u) = (ug,u) — (A, u) > (ug, u)

since (A;,u) = ¢(A;,v) < 0. In other words, at every step the scalar product (uy,u) (weakly)
increases. In particular, we have (ug,,u) > (u,u). Combining this with the bound we obtained
above, we get

cnmmlax{(v)i} > (upy, u) > (u,u) = (v,v).

Now, since (v,v) > 0, we can take c¢ large enough so the above inequality does not hold, and thus
we come to a contradiction.



