Topics in Combinatorics IV, Solutions 9 (Week 9)

9.1. Denote by $r_{x}(P)$ an insertion of x in a partial tableau P in the RSK algorithm. Suppose that during $r_{x}(P)$ the elements x_{1}, \ldots, x_{k} are pushed down from rows $1,2, \ldots, k$ and columns $j_{1}, j_{2}, \ldots, j_{k}$ respectively. Then
(a) $x<x_{1}<\cdots<x_{k}$;
(b) $j_{1} \geq \cdots \geq j_{k}$;
(c) if $P^{\prime}=r_{x}(P)$, then $P_{i, j}^{\prime} \leq P_{i, j}$ for all i, j.

Solution:

(a) This follows directly from the definition of the algorithm: x_{i} pushes down x_{i+1} if $x_{i}<x_{i+1}$.
(b) Let x_{i} be pushed down from column j_{i}. Since P is a partial tableau, the element at the place $\left(i+1, j_{i}\right)$ is strictly larger than x_{i}, and thus x_{i} is inserted in the row $i+1$ in the column j_{i} or less, i.e. $j_{i+1} \leq j_{i}$.
(c) This follows from (a): if $P_{i, j}^{\prime} \neq P_{i, j}$, then the element $P_{i, j}^{\prime}$ was pushed down from row $i-1$, and $P_{i, j}$ is pushed down to row $i+1$, i.e. $P_{i, j}^{\prime}=x_{i-1}<x_{i}=P_{i, j}$ in the notation of (a).
9.2. (a) Show that

$$
\sum_{\lambda \vdash n} f_{\lambda}=\#\left\{w \in S_{n} \mid w^{2}=1\right\}
$$

(b) Show that

$$
\sum_{\lambda \vdash n} f_{\lambda}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} \frac{(2 k)!}{2^{k} k!}
$$

Solution:

(a) By Theorem 5.11, $w \in S_{n}$ is taken to (P, Q) if and only if w^{1} is taken to (Q, P). Thus, $w=w^{-1}$ if and only if $P=Q$, so we got a bijection between involutions in S_{n} and SYT of total size n.
(b) By (a), we just need to count the number of permutations in S_{n} of order 2 or 1 . These are precisely those which are decomposed into cycles of length 1 and 2.
Let an involution in S_{n} contain precisely k cycles of length 2 . Clearly, k may vary from 0 to $\lfloor n / 2\rfloor$. To define such an involution we need first to choose $2 k$ numbers involved in 2-cycles (there are $\binom{n}{2 k}$ possibilities), and then to choose how we split $2 k$ into k groups of 2 (the number of possibilities for the latter is given by the multinomial coefficient $\binom{2 k}{2,2, \ldots, 2}=\frac{(2 k)!}{2!\ldots 2!}=\frac{(2 k)!}{2^{k}}$. Note that the order of the 2 -cycles is irrelevant (they all commute as they contain distinct numbers), so we also need to divide by $k!$. Therefore, for given k we get $\binom{n}{2 k} \frac{(2 k)!}{2^{k} k!}$ involutions with k 2-cycles, and thus the total number of involutions in S_{n} is equal to

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} \frac{(2 k)!}{2^{k} k!}
$$

9.3. (A bit of linear algebra) Let A be a real symmetric indecomposable $n \times n$ matrix with all off-diagonal elements being non-positive. Show that A is positive definite if and only if there exists a vector $v \in \mathbb{R}^{n}$ with all positive coordinates such that all coordinates of $A v$ are also positive.
Hint: use Perron-Frobenius Theorem which states that if all entries of a square indecomposable matrix are non-negative, then it has a simple positive eigenvalue μ such that μ has maximal modulus amongst all eigenvalues of A, and all the coordinates of the corresponding eigenvector are positive.

Solution:

Let m be the maximal positive diagonal value of $a_{i j}$ (or zero if all diagonal element are negative), consider the matrix $A^{\prime}=m I-A$. All elements of A^{\prime} are non-negative, so, by the Perron-Frobenius theorem, there is an eigenvalue $\mu>0$ of A^{\prime} and eigenvector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ such that $A^{\prime} \boldsymbol{v}=\mu \boldsymbol{v}$ and $v_{i}>0$.
Observe that eigenvectors of A and A^{\prime} coincide: if $A \boldsymbol{x}=\gamma \boldsymbol{x}$, then $A^{\prime} \boldsymbol{x}=(m I-A) \boldsymbol{x}=(m-\gamma) \boldsymbol{x}$. In particular, if the eigenvalues of A^{\prime} are $\mu=\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ (there are n real eigenvalues as A^{\prime} is symmetric), then the eigenvalues of A are $m-\mu \leq m-\mu_{2} \leq \cdots \leq m-\mu_{n}$, and thus $m-\mu$ is the smallest eigenvalue of A. If A is positive definite, then $m-\mu>0$, and thus \boldsymbol{v} satisfies the assumptions: all $v_{i}>0$, and $(A \boldsymbol{v})_{i}=(m-\mu) v_{i}>0$.
Therefore, we proved that if A is positive definite then there exists a vector $\boldsymbol{v} \in \mathbb{R}^{n}$ with all positive coordinates such that all coordinates of $A \boldsymbol{v}$ are also positive.
Now assume that such a vector exists (call it \boldsymbol{h}) and A is not positive definite. Let, as before, \boldsymbol{v} be an eigenvector for the minimal eigenvalue of A (which is less or equal than zero), we can assume \boldsymbol{v} has all coordinates positive as shown above. We are going to deduce a contradiction from the coexistence of \boldsymbol{h} and \boldsymbol{v}.

The proof below follows the ideas of Theorem 6.1 (and, in particular, it also provides a proof of the implication (2) $\rightarrow(1)$ of Theorem 6.1). Of course, this is one of possible proofs only, there exist pure linear-algebraic proofs as well.

Since $m-\mu \leq 0, A \boldsymbol{v}$ has all coordinates negative or zero, and thus $\left(\boldsymbol{v}, \boldsymbol{A}_{i}\right)=v_{i} \leq 0$ for any i, where \boldsymbol{A}_{i} is the i-th row of A.

Let $\boldsymbol{u}=\boldsymbol{u}_{0}=c \boldsymbol{v}$ for $c>0$ large enough (we will specify what c should be equal to later). Consider the following iterative process (similar to the Cartan firing game with initial configuration \boldsymbol{u}, see Section 6.2 of lectures): choose one i such that $\left(\boldsymbol{u}_{k}\right)_{i} \geq a_{i i}$, and define $\boldsymbol{u}_{k+1}=\boldsymbol{u}_{k}-\boldsymbol{A}_{i}$. Observe that we have the following:

$$
\left(\boldsymbol{u}_{k+1}, \boldsymbol{h}\right)=\left(\boldsymbol{u}_{k}-\boldsymbol{A}_{i}, \boldsymbol{h}\right)=\left(\boldsymbol{u}_{k}, \boldsymbol{h}\right)-\left(\boldsymbol{A}_{i}, \boldsymbol{h}\right) \leq\left(\boldsymbol{u}_{k}, \boldsymbol{h}\right)-M,
$$

where $M=\min _{j}\left(\boldsymbol{A}_{j}, \boldsymbol{h}\right)=\min _{j}(A \boldsymbol{h})_{j}>0$. Therefore, after each step the inner product $\left(\boldsymbol{u}_{k}, \boldsymbol{h}\right)$ decreases by at least $M>0$, so after a sufficiently large number of steps it will become negative. On the other hand, all coordinates of \boldsymbol{u}_{k} are non-negative for every k : this is true for \boldsymbol{u}_{0}, and the property is preserved at each step - if $\boldsymbol{u}_{k+1}=\boldsymbol{u}_{k}-\boldsymbol{A}_{i}$, then $\left(\boldsymbol{u}_{k+1}\right)_{i}=\left(\boldsymbol{u}_{k}\right)_{i}-a_{i i} \geq 0$ by the choice of i, and $\left(\boldsymbol{u}_{k+1}\right)_{j}=\left(\boldsymbol{u}_{k}\right)_{j}-a_{i j} \geq\left(\boldsymbol{u}_{k}\right)_{j} \geq 0$ for $i \neq j$ since all off-diagonal elements of A are non-positive. Thus, both \boldsymbol{u}_{k} and \boldsymbol{h} have all coordinates non-negative, and therefore ($\left.\boldsymbol{u}_{k}, \boldsymbol{h}\right) \geq 0$ for all k. The contradiction shows that there exists k_{0} such that $\left(\boldsymbol{u}_{k_{0}}\right)_{i}<a_{i i}$ for all i, so the Cartan firing is finite. In particular, we get

$$
\left(\boldsymbol{u}_{k_{0}}, \boldsymbol{u}\right) \leq n \cdot m \cdot \max _{i}\left\{(\boldsymbol{u})_{i}\right\}=c n m \max _{i}\left\{(\boldsymbol{v})_{i}\right\} .
$$

Consider now $\left(\boldsymbol{u}_{k+1}, \boldsymbol{u}\right)$. We have

$$
\left(\boldsymbol{u}_{k+1}, \boldsymbol{u}\right)=\left(\boldsymbol{u}_{k}-\boldsymbol{A}_{i}, \boldsymbol{u}\right)=\left(\boldsymbol{u}_{k}, \boldsymbol{u}\right)-\left(\boldsymbol{A}_{i}, \boldsymbol{u}\right) \geq\left(\boldsymbol{u}_{k}, \boldsymbol{u}\right)
$$

since $\left(\boldsymbol{A}_{i}, \boldsymbol{u}\right)=c\left(\boldsymbol{A}_{i}, \boldsymbol{v}\right) \leq 0$. In other words, at every step the scalar product ($\left.\boldsymbol{u}_{k}, \boldsymbol{u}\right)$ (weakly) increases. In particular, we have $\left(\boldsymbol{u}_{k_{0}}, \boldsymbol{u}\right) \geq(\boldsymbol{u}, \boldsymbol{u})$. Combining this with the bound we obtained above, we get

$$
c n m \max _{i}\left\{(\boldsymbol{v})_{i}\right\} \geq\left(\boldsymbol{u}_{k_{0}}, \boldsymbol{u}\right) \geq(\boldsymbol{u}, \boldsymbol{u})=c^{2}(\boldsymbol{v}, \boldsymbol{v}) .
$$

Now, since $(\boldsymbol{v}, \boldsymbol{v})>0$, we can take c large enough so the above inequality does not hold, and thus we come to a contradiction.

