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Topics in Combinatorics IV, Solutions 9 (Week 9)

9.1. Denote by rx(P ) an insertion of x in a partial tableau P in the RSK algorithm. Suppose
that during rx(P ) the elements x1, . . . , xk are pushed down from rows 1, 2, . . . , k and columns
j1, j2, . . . , jk respectively. Then

(a) x < x1 < · · · < xk;

(b) j1 ≥ · · · ≥ jk;

(c) if P ′ = rx(P ), then P ′
i,j ≤ Pi,j for all i, j.

Solution:

(a) This follows directly from the definition of the algorithm: xi pushes down xi+1 if xi < xi+1.

(b) Let xi be pushed down from column ji. Since P is a partial tableau, the element at the place
(i+1, ji) is strictly larger than xi, and thus xi is inserted in the row i+1 in the column ji or
less, i.e. ji+1 ≤ ji.

(c) This follows from (a): if P ′
i,j ̸= Pi,j , then the element P ′

i,j was pushed down from row i − 1,
and Pi,j is pushed down to row i+ 1, i.e. P ′

i,j = xi−1 < xi = Pi,j in the notation of (a).

9.2. (a) Show that ∑
λ⊢n

fλ = #{w ∈ Sn | w2 = 1}

(b) Show that ∑
λ⊢n

fλ =

⌊n/2⌋∑
k=0

(
n

2k

)
(2k)!

2k k!

Solution:

(a) By Theorem 5.11, w ∈ Sn is taken to (P,Q) if and only if w1 is taken to (Q,P ). Thus,
w = w−1 if and only if P = Q, so we got a bijection between involutions in Sn and SYT of
total size n.

(b) By (a), we just need to count the number of permutations in Sn of order 2 or 1. These are
precisely those which are decomposed into cycles of length 1 and 2.

Let an involution in Sn contain precisely k cycles of length 2. Clearly, k may vary from 0 to
⌊n/2⌋. To define such an involution we need first to choose 2k numbers involved in 2-cycles
(there are

(
n
2k

)
possibilities), and then to choose how we split 2k into k groups of 2 (the number

of possibilities for the latter is given by the multinomial coefficient
(

2k
2,2,...,2

)
= (2k)!

2!...2! =
(2k)!
2k

.
Note that the order of the 2-cycles is irrelevant (they all commute as they contain distinct

numbers), so we also need to divide by k!. Therefore, for given k we get
(
n
2k

) (2k)!
2k k!

involutions
with k 2-cycles, and thus the total number of involutions in Sn is equal to

⌊n/2⌋∑
k=0

(
n

2k

)
(2k)!

2k k!
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9.3. (A bit of linear algebra) Let A be a real symmetric indecomposable n × n matrix with all
off-diagonal elements being non-positive. Show that A is positive definite if and only if there
exists a vector v ∈ Rn with all positive coordinates such that all coordinates of Av are also
positive.
Hint: use Perron-Frobenius Theorem which states that if all entries of a square indecom-
posable matrix are non-negative, then it has a simple positive eigenvalue µ such that µ has
maximal modulus amongst all eigenvalues of A, and all the coordinates of the corresponding
eigenvector are positive.

Solution:

Let m be the maximal positive diagonal value of aij (or zero if all diagonal element are negative),
consider the matrix A′ = mI −A. All elements of A′ are non-negative, so, by the Perron-Frobenius
theorem, there is an eigenvalue µ > 0 of A′ and eigenvector v = (v1, . . . , vn) such that A′v = µv
and vi > 0.

Observe that eigenvectors of A and A′ coincide: if Ax = γx, then A′x = (mI − A)x = (m − γ)x.
In particular, if the eigenvalues of A′ are µ = µ1 ≥ µ2 ≥ · · · ≥ µn (there are n real eigenvalues as
A′ is symmetric), then the eigenvalues of A are m− µ ≤ m− µ2 ≤ · · · ≤ m− µn, and thus m− µ
is the smallest eigenvalue of A. If A is positive definite, then m − µ > 0, and thus v satisfies the
assumptions: all vi > 0, and (Av)i = (m− µ)vi > 0.

Therefore, we proved that if A is positive definite then there exists a vector v ∈ Rn with all positive
coordinates such that all coordinates of Av are also positive.

Now assume that such a vector exists (call it h) and A is not positive definite. Let, as before, v be
an eigenvector for the minimal eigenvalue of A (which is less or equal than zero), we can assume
v has all coordinates positive as shown above. We are going to deduce a contradiction from the
coexistence of h and v.

The proof below follows the ideas of Theorem 6.1 (and, in particular, it also provides a proof of the
implication (2)→(1) of Theorem 6.1). Of course, this is one of possible proofs only, there exist pure
linear-algebraic proofs as well.

Since m−µ ≤ 0, Av has all coordinates negative or zero, and thus (v,Ai) = vi ≤ 0 for any i, where
Ai is the i-th row of A.

Let u = u0 = cv for c > 0 large enough (we will specify what c should be equal to later). Consider
the following iterative process (similar to the Cartan firing game with initial configuration u, see
Section 6.2 of lectures): choose one i such that (uk)i ≥ aii, and define uk+1 = uk −Ai. Observe
that we have the following:

(uk+1,h) = (uk −Ai,h) = (uk,h)− (Ai,h) ≤ (uk,h)−M,

where M = min
j

(Aj ,h) = min
j

(Ah)j > 0. Therefore, after each step the inner product (uk,h)

decreases by at least M > 0, so after a sufficiently large number of steps it will become negative.
On the other hand, all coordinates of uk are non-negative for every k: this is true for u0, and the
property is preserved at each step – if uk+1 = uk − Ai, then (uk+1)i = (uk)i − aii ≥ 0 by the
choice of i, and (uk+1)j = (uk)j − aij ≥ (uk)j ≥ 0 for i ̸= j since all off-diagonal elements of A are
non-positive. Thus, both uk and h have all coordinates non-negative, and therefore (uk,h) ≥ 0 for
all k. The contradiction shows that there exists k0 such that (uk0)i < aii for all i, so the Cartan
firing is finite. In particular, we get

(uk0 ,u) ≤ n ·m ·max
i

{(u)i} = cnmmax
i

{(v)i}.
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Consider now (uk+1,u). We have

(uk+1,u) = (uk −Ai,u) = (uk,u)− (Ai,u) ≥ (uk,u)

since (Ai,u) = c(Ai,v) ≤ 0. In other words, at every step the scalar product (uk,u) (weakly)
increases. In particular, we have (uk0 ,u) ≥ (u,u). Combining this with the bound we obtained
above, we get

cnmmax
i

{(v)i} ≥ (uk0 ,u) ≥ (u,u) = c2(v,v).

Now, since (v,v) > 0, we can take c large enough so the above inequality does not hold, and thus
we come to a contradiction.

3


