Topics in Combinatorics IV, Revision problems (Week 21)

These are examples from the second revision lecture. All HW problems are also revision problems.

R.1. Let $W = \langle s_1, \ldots, s_4 | s_i^2, (s_2s_j)^3$ for $j \neq 2, (s_ks_l)^2$ for $k, l \neq 2 \rangle$ be the Weyl group of type D_4 . Show that the subgroup Γ of W generated by s_2 and $s_1s_3s_4$ is isomorphic to the dihedral group of type $G_2 = I_2(6)$.

Denote $a = s_2$, $b = s_1 s_3 s_4$. Then Γ is generated by a, b with some relations. Observe that $a^2 = b^2 = 1$, so all elements of Γ are alternating products of a and b. A words with an odd number of letters cannot be trivial (as it is conjugated to a or b), so the only missing relation is $(ab)^m$ for some m. Since $ab = s_2 s_1 s_3 s_4$ is a Coxeter element of W, its order is the Coxeter number of D_4 , which can be easily found from the formula N = nh/2, where N is the number of positive roots, h is the Coxeter number, n is the dimension. Namely, n = 4, N = 12 as positive roots of D_4 are of the type $e_i \pm e_j$ (where $1 \le i < j \le 4$), so h = 6. Therefore,

$$\Gamma = \langle a, b \mid a^2, b^2, (ab)^6 \rangle$$

R.2. Let Δ be the root system of type D_5 . Compute the Coxeter number of Δ . Find the exponents of the Weyl group of Δ .

The set of roots of Δ is $\{\pm e_i \pm e_j\}$, where $i, j = 1, \ldots, 5, i < j$, and $\{e_i\}$ is an orthonormal basis of \mathbb{R}^5 .

The number of positive roots of D_5 is N = 20, the rank is n = 5. Using the formula h = 2N/n we see that h = 8.

Now, we can use the result from lectures stating that all integers from 1 to h - 1 coprime with h are exponents. This implies that 1, 3, 5, 7 are exponents. The sum of exponents is equal to N = 20, so the only missing exponent is 4. (Note that the last exponent can also be found as h/2 as it should provide the only real eigenvalue of the Coxeter element).

<u>Alternatively</u>, a linear map for a Coxeter element can be written explicitly. For example, for $c = r_{e_1-e_2}r_{e_2-e_3}r_{e_3-e_4}r_{e_4-e_5}r_{e_4+e_5}$ the matrix of c in the basis $\{e_i\}$ is

$$c = \begin{pmatrix} 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

and it is easy to see that its order is 8.

The explicit expression for the matrix of a Coxeter element (see the alternative solution above) implies that the characteristic polynomial is $(-x - 1)(x^4 + 1)$, so the eigenvalues are $-1 = e^{\frac{2\pi i}{8}4}$ and $e^{\frac{\pi i}{4} + \frac{2k\pi i}{4}} = e^{(1+2k)\frac{2\pi i}{8}}$, where k = 0, 1, 2, 3. Therefore, exponents are 1, 3, 4, 5, 7.

<u>Alternatively</u>, one can use a result from lectures that the Young diagram $\lambda = (l_1, \ldots, l_k)$ which is conjugate to the Young diagram $\mu = (m_5, m_4, m_3, m_2, m_1)$ (where m_i are the exponents) satisfies the following: l_i is equal to the number of positive roots of height *i*. Thus, we are left to compute the number of positive roots of every height.

A root of type $e_i - e_j$ can be written as

$$e_i - e_j = \sum_{k=i}^{j-1} (e_k - e_{k+1}),$$

so the height of $e_i - e_j$ is j - i. This number takes value 1 four times, 2 three times, 3 two times, and 4 one time.

A root of type $e_i + e_j$ can be written as

$$e_i + e_j = (e_i - e_5) + (e_j + e_5) = (e_i - e_5) + (e_j - e_4) + (e_4 + e_5),$$

so the height of $e_i + e_j$ is (5-i) + (4-j) + 1 = 10 - (i+j). Note that if j = 5 then the previous calculation should be adjusted, but the answer is still correct. The number 10 - (i+j) takes values 1, 2, 6, 7 one time each, and 3, 4, 5 two times each.

Thus, we have $l_1 = 5$, $l_2 = l_3 = 4$, $l_4 = 3$, $l_5 = 2$, and $l_6 = l_7 = 1$. This implies that $\mu = (m_5, m_4, m_3, m_2, m_1) = (7, 5, 4, 3, 1)$.