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Topics in Combinatorics IV, Revision problems (Week 21)

These are examples from the second revision lecture. All HW problems are also revision problems.

R.1. Let W = ⟨s1, . . . , s4 | s2i , (s2sj)3 for j ̸= 2, (sksl)
2 for k, l ̸= 2⟩ be the Weyl group of type D4.

Show that the subgroup Γ of W generated by s2 and s1s3s4 is isomorphic to the dihedral
group of type G2 = I2(6).

Denote a = s2, b = s1s3s4. Then Γ is generated by a, b with some relations. Observe that
a2 = b2 = 1, so all elements of Γ are alternating products of a and b. A words with an
odd number of letters cannot be trivial (as it is conjugated to a or b), so the only missing
relation is (ab)m for some m. Since ab = s2s1s3s4 is a Coxeter element of W , its order is the
Coxeter number of D4, which can be easily found from the formula N = nh/2, where N is
the number of positive roots, h is the Coxeter number, n is the dimension. Namely, n = 4,
N = 12 as positive roots of D4 are of the type ei ± ej (where 1 ≤ i < j ≤ 4), so h = 6.
Therefore,

Γ = ⟨a, b | a2, b2, (ab)6⟩

R.2. Let ∆ be the root system of typeD5. Compute the Coxeter number of ∆. Find the exponents
of the Weyl group of ∆.

The set of roots of ∆ is {±ei ± ej}, where i, j = 1, . . . , 5, i < j, and {ei} is an orthonormal
basis of R5.

The number of positive roots of D5 is N = 20, the rank is n = 5. Using the formula h = 2N/n
we see that h = 8.

Now, we can use the result from lectures stating that all integers from 1 to h − 1 coprime
with h are exponents. This implies that 1, 3, 5, 7 are exponents. The sum of exponents is
equal to N = 20, so the only missing exponent is 4. (Note that the last exponent can also
be found as h/2 as it should provide the only real eigenvalue of the Coxeter element).

Alternatively, a linear map for a Coxeter element can be written explicitly. For example, for
c = re1−e2re2−e3re3−e4re4−e5re4+e5 the matrix of c in the basis {ei} is

c =


0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1

 ,

and it is easy to see that its order is 8.
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The explicit expression for the matrix of a Coxeter element (see the alternative solution
above) implies that the characteristic polynomial is (−x − 1)(x4 + 1), so the eigenvalues

are −1 = e
2π i
8

4 and e
π i
4
+ 2kπ i

4 = e(1+2k) 2π i
8 , where k = 0, 1, 2, 3. Therefore, exponents are

1, 3, 4, 5, 7.

Alternatively, one can use a result from lectures that the Young diagram λ = (l1, . . . , lk) which
is conjugate to the Young diagram µ = (m5,m4,m3,m2,m1) (where mi are the exponents)
satisfies the following: li is equal to the number of positive roots of height i. Thus, we are
left to compute the number of positive roots of every height.

A root of type ei − ej can be written as

ei − ej =

j−1∑
k=i

(ek − ek+1),

so the height of ei − ej is j − i. This number takes value 1 four times, 2 three times, 3 two
times, and 4 one time.

A root of type ei + ej can be written as

ei + ej = (ei − e5) + (ej + e5) = (ei − e5) + (ej − e4) + (e4 + e5),

so the height of ei+ej is (5−i)+(4−j)+1 = 10−(i+j). Note that if j = 5 then the previous
calculation should be adjusted, but the answer is still correct. The number 10− (i+ j) takes
values 1, 2, 6, 7 one time each, and 3, 4, 5 two times each.

Thus, we have l1 = 5, l2 = l3 = 4, l4 = 3, l5 = 2, and l6 = l7 = 1. This implies that
µ = (m5,m4,m3,m2,m1) = (7, 5, 4, 3, 1).
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