Topics in Combinatorics IV, Problems Class 2 (Week 4)

2.1. Find a bijection between non-crossing matchings on $2 n$ vertices and ballot sequences of length $2 n$.

The bijection is the following: left side of an arc corresponds to -1 , right side of an arc corresponds to +1 . There is a place in the sequence where +1 is followed by -1 , this corresponds to a short arc $i i+1$, delete it and reduce to the case of length $2(n-1)$.
2.2. Compute the number of SYT of shape (n, n, n), find a combinatorial interpretation of these (i.e., find objects these SYT count).

The number can be found by the hook length formula: $H(\lambda)=\frac{(n+2)!}{2}(n+1)!n!$, so $f_{\lambda}=$ $\frac{2(3 n)!}{n!(n+1)!(n+2)!}$.
These SYT can be considered as "3-dim Dyck paths": lattice paths from ($0,0,0$) to (n, n, n) such that they lie in the tetrahedron with vertices $(0,0,0),(n, 0,0),(n, n, 0)$ and (n, n, n), i.e. they lie in the domain $\{(x, y, z) \mid 0 \leq z \leq y \leq x \leq n\}$.
2.3. Compute the number of "beginnings of all Dyck paths" between $(0,0)$ and $(2 n-k, k)$.

There are several ways to do this, one is by reflection: we get it to be the difference of all lattice paths between $(0,0)$ and $(2 n-k, k)$ and all lattice paths between $(0,0)$ and $(2 n-k,-k-2)$, i.e. the number is

$$
\binom{2 n-k}{n}-\binom{2 n-k}{n+1}=\frac{k+1}{2 n-k+1}\binom{2 n-k+1}{n+1}
$$

