Topics in Combinatorics IV, Problems Class 4 (Week 8)

The first part of the class was devoted to alternative solutions of the third assignment question 6.4.
4.1. Let L be a finite lattice. Define P to be the poset of all join-irreducible elements of L (with the order inherited from L). Let $x \in L$, consider $I_{x}=\{t \in P \mid t \leq x\} \subset P$. Show that $x=\vee\left\{t \mid t \in I_{x}\right\}$.

Let $y=\vee\left\{t \mid t \in I_{x}\right\}$, and assume $y \neq x$. Since $x \geq t$ for all $t \in I_{x}$, we have $x \geq y$. Observe that $y \geq t$ for all $t \in I_{x}$.
Define a set $X=\{z \in L \mid z \leq x, z \not \leq y\}$. Note that $X \neq \emptyset$ since $x \in X$. As L is finite, we can take a minimal element of X, call it x_{0}. Observe that $x_{0} \neq \hat{0}$ as $\hat{0} \leq y$, so there exists at least one element which is less than x_{0}. Then we have a dihotomy: either x_{0} is join-irreducible or not.

Assume first that x_{0} is join-irreducible. Since $x_{0} \in X, x_{0} \leq x$, and thus $x_{0} \in I_{x}$, which implies $x_{0} \leq y$, which condradicts $x_{0} \in X$.
Now assume that x_{0} is not join-irreducible, so $x_{0}=a \vee b, a, b<x_{0}$. Since x_{0} is minimal, both $a, b \notin X$. Note that $a, b<x_{0} \leq x$, which implies that $a, b \leq y$ (otherwise they would have lied in X). So, we have $a, b \leq y$, which implies $a \vee b \leq y$. But $a \vee b=x_{0} \in X$, so $a \vee b \not \leq y$, and we came to a contradiction again.
4.2. Given $w \in S_{n}$, define a poset P_{w} as follows: elements of P_{w} are elements of [n], and $w_{i}<{ }_{P_{w}} w_{j}$ if $w_{i}<w_{j}$ and $i<j$. Now, construct a Young diagram $\lambda\left(P_{w}\right)$ as in the Greene's Theorem. Check that for $w=649723158 \in S_{9}$ the Young diagram $\lambda\left(P_{w}\right)$ coincides with the Schensted shape of λ.

To construct $\lambda\left(P_{w}\right)$, we need first to draw the Hasse diagram of P_{w} :

Now we compute numbers l_{i}, where l_{i} is the maximal size of a union of i chains.
Clearly, the only longest chain is $2<\cdot 3<\cdot 5<\cdot 8$, so $l_{1}=4$.
The next number, l_{2}, cannot be equal 7 as for that one should have disjoint chains of size 3 and 4, but after removing the longest chain the maximal chain left has size 2. Therefore, $l_{2}=6$ (add e.g. chain $6<\cdot 9$).
Now, l_{3} cannot be equal to 9 , as this would imply that we covered the whole P_{w} by 3 chains, which is impossible as there are four minimal elements. At the same time, we can add chain $4<\cdot 7$ to see that $l_{3}=8$.
Finally, $l_{4}=9$ (just add 1).
Therefore, we have $\lambda_{1}=l_{1}=4, \lambda_{2}=l_{2}-l_{1}=6-4=2, \lambda_{3}=l_{3}-l_{2}=8-6=2$, $\lambda_{4}=l_{4}-l_{3}=9-8=1$, so $\lambda\left(p_{w}\right)=(4,2,2,1) \vdash 9$.

To compute the insertion tableau of $w=649723158$ we apply the RSK algorithm.
Step 1: 6 is inserted in the box $(1,1)$.
Step 2: 4 is inserted in the box $(1,1)$, and 6 is pushed down into the box $(1,2)$.
Step 3: 9 is inserted in the box $(1,2)$.
Step 4: 7 is inserted in the box $(1,2)$, and thus pushes down 9 into the second row, where it goes to the box $(2,2)$.
Step 5: 2 is inserted in the box $(1,1)$, and thus pushes down 4 into the second row, where it goes to the box $(2,1)$ and pushes 6 down into a new box $(3,1)$.
Step 6: 3 is inserted in the box $(1,2)$, and thus pushes down 7 into the second row, where it goes to the box $(2,2)$ and pushes 6 down into the third row, where it forms a new box $(3,2)$.
Step 7: 1 is inserted in the box $(1,1)$, it pushes down 2 to the box $(2,1)$, which pushes 4 to the box $(3,1)$, and thus 6 is pushed down into the fourth row to form a new box $(4,1)$.
Step 8: 5 is inserted in the box $(1,3)$.
Step 9: 8 is inserted in the box $(1,4)$.
As a result, we get the following SYT which is of shape $(4,2,2,1)$ as required.

$$
P=
$$

