Topics in Combinatorics IV, Problems Class 4 (Week 8)

The first part of the class was devoted to alternative solutions of the third assignment question 6.4.

4.1. Let L be a finite lattice. Define P to be the poset of all join-irreducible elements of L (with the order inherited from L). Let $x \in L$, consider $I_x = \{t \in P \mid t \leq x\} \subset P$. Show that $x = \bigvee\{t \mid t \in I_x\}$.

Let $y = \bigvee \{t \mid t \in I_x\}$, and assume $y \neq x$. Since $x \geq t$ for all $t \in I_x$, we have $x \geq y$. Observe that $y \geq t$ for all $t \in I_x$.

Define a set $X = \{z \in L \mid z \leq x, z \not\leq y\}$. Note that $X \neq \emptyset$ since $x \in X$. As L is finite, we can take a minimal element of X, call it x_0 . Observe that $x_0 \neq \hat{0}$ as $\hat{0} \leq y$, so there exists at least one element which is less than x_0 . Then we have a dihotomy: either x_0 is join-irreducible or not.

Assume first that x_0 is join-irreducible. Since $x_0 \in X$, $x_0 \le x$, and thus $x_0 \in I_x$, which implies $x_0 \le y$, which condradicts $x_0 \in X$.

Now assume that x_0 is not join-irreducible, so $x_0 = a \lor b$, $a, b < x_0$. Since x_0 is minimal, both $a, b \notin X$. Note that $a, b < x_0 \le x$, which implies that $a, b \le y$ (otherwise they would have lied in X). So, we have $a, b \le y$, which implies $a \lor b \le y$. But $a \lor b = x_0 \in X$, so $a \lor b \not \le y$, and we came to a contradiction again.

4.2. Given $w \in S_n$, define a poset P_w as follows: elements of P_w are elements of [n], and $w_i <_{P_w} w_j$ if $w_i < w_j$ and i < j. Now, construct a Young diagram $\lambda(P_w)$ as in the Greene's Theorem. Check that for $w = 649723158 \in S_9$ the Young diagram $\lambda(P_w)$ coincides with the Schensted shape of λ .

To construct $\lambda(P_w)$, we need first to draw the Hasse diagram of P_w :

Now we compute numbers l_i , where l_i is the maximal size of a union of i chains.

Clearly, the only longest chain is 2 < 3 < 5 < 8, so $l_1 = 4$.

The next number, l_2 , cannot be equal 7 as for that one should have disjoint chains of size 3 and 4, but after removing the longest chain the maximal chain left has size 2. Therefore, $l_2 = 6$ (add e.g. chain 6 < 9).

Now, l_3 cannot be equal to 9, as this would imply that we covered the whole P_w by 3 chains, which is impossible as there are four minimal elements. At the same time, we can add chain 4 < 7 to see that $l_3 = 8$.

Finally, $l_4 = 9$ (just add 1).

Therefore, we have
$$\lambda_1 = l_1 = 4$$
, $\lambda_2 = l_2 - l_1 = 6 - 4 = 2$, $\lambda_3 = l_3 - l_2 = 8 - 6 = 2$, $\lambda_4 = l_4 - l_3 = 9 - 8 = 1$, so $\lambda(p_w) = (4, 2, 2, 1) \vdash 9$.

To compute the insertion tableau of w = 649723158 we apply the RSK algorithm.

- Step 1: 6 is inserted in the box (1, 1).
- Step 2: 4 is inserted in the box (1,1), and 6 is pushed down into the box (1,2).
- Step 3: 9 is inserted in the box (1, 2).
- Step 4: 7 is inserted in the box (1,2), and thus pushes down 9 into the second row, where it goes to the box (2,2).
- Step 5: 2 is inserted in the box (1,1), and thus pushes down 4 into the second row, where it goes to the box (2,1) and pushes 6 down into a new box (3,1).
- Step 6: 3 is inserted in the box (1,2), and thus pushes down 7 into the second row, where it goes to the box (2,2) and pushes 6 down into the third row, where it forms a new box (3,2).
- Step 7: 1 is inserted in the box (1,1), it pushes down 2 to the box (2,1), which pushes 4 to the box (3,1), and thus 6 is pushed down into the fourth row to form a new box (4,1).
- Step 8: 5 is inserted in the box (1,3).
- Step 9: 8 is inserted in the box (1, 4).

As a result, we get the following SYT which is of shape (4,2,2,1) as required.

$$P = \begin{array}{|c|c|c|c|} \hline 1 & 3 & 5 & 8 \\ \hline 2 & 7 \\ \hline 4 & 9 \\ \hline 6 \\ \hline \end{array}$$