ESM 1B, Homework 1

Due Date: 14:00 Friday, September 18, 2009.

Explain your answers! Problems marked (\star) are bonus ones.
1.1. For vectors $\vec{a}=(0,2,1)$ and $\vec{b}=(1,-1,0)$, find $\vec{a}+\vec{b}, \vec{b}-2 \vec{a}, \vec{a} \cdot \vec{b}, \vec{a} \times \vec{b},|\vec{a}|,|\vec{b}|$, the cosine of the angle between \vec{a} and \vec{b}, the area of the parallelogram spanned by \vec{a} and \vec{b}.
1.2. Let Π be a parallelepiped. Consider the three vectors connecting a vertex of Π to the centers of the three faces meeting at this vertex. Define a new parallelepiped Π^{\prime} as the parallelepiped spanned by these three vectors. Assuming that the volume of Π is known, find the volume of Π^{\prime}.
1.3. (a) Prove the bac-cab formula

$$
\vec{a} \times(\vec{b} \times c)=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})
$$

Hint: choose appropriate coordinate system.
(b) Give an example showing that the cross-product is not associative:

$$
\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c} .
$$

(c) Use properties of scalar triple product to show that

$$
(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})
$$

1.4. (\star) Using vector methods, prove that the segments connecting midpoints of opposite edges in a tetrahedron intersect at one point, and that this point bisects each of these segments.

Hint: compute position vectors of midpoints of these segments and show that these vectors coincide.

