ESM 1B, Homework 10

Due Date: 14:00 Thursday, December 3, 2009.

Explain your answers! Problems marked (\star) are bonus ones.
10.1. Solve (find general solutions of) the following differential equations by separation of variables:
(a) $x^{2} y^{2} \frac{d y}{d x}+1=y$;
(b) $\sqrt{y^{2}+1} d x=x y d y$.
10.2. Solve the following exact equations:
(a) $2 x y d x+\left(x^{2}-y^{2}\right) d y=0$;
(b) $e^{-y} d x-\left(2 y+x e^{-y}\right) d y=0$.
10.3. Solve the following equations by finding an integrating factor:
(a) $y^{2} d x-\left(x y+x^{3}\right) d y=0$;
(b) $\left(y-\frac{1}{x}\right) d x+\frac{d y}{y}=0$.
10.4. Solve the following homogeneous equations:
(a) $x^{2} \frac{d y}{d x}=y(x+y)$;
(b) $\left(x \sec \frac{y}{x}+y\right) d x-x d y=0$.
10.5. Solve the following equations:
(a) $\frac{d y}{d x}-\frac{2 y}{x}=-x^{2} y^{2}, \quad y(1)=1 ;$
(b) $2 x y^{3} \frac{d y}{d x}+y^{4}=1, \quad y(1)=0$;
10.6. (\star) Newton's law of cooling can be written in the form

$$
\frac{d T(t)}{d t}=-k\left(T(t)-T_{0}\right)
$$

where t is time, $T=T(t)$ is the temperature of an object, $T_{0}<T$ is the temperature of the outside medium, and k is a positive constant. Using Newton's law of cooling, determine how long it takes for a cup of tee at the initial temperature of 90° to cool down to 40°. The outside temperature is 20°. Express the answer through k. Give a rough estimate for k based on your experience.

