ESM 1B, Homework 10

Due Date: 14:00 Thursday, December 3, 2009.

Explain your answers! Problems marked (\star) are bonus ones.

10.1. Solve (find general solutions of) the following differential equations by separation of variables:

(a)
$$x^2y^2\frac{dy}{dx} + 1 = y;$$
 (b) $\sqrt{y^2 + 1} dx = xy dy.$

10.2. Solve the following exact equations:

(a)
$$2xy dx + (x^2 - y^2)dy = 0$$
; (b) $e^{-y} dx - (2y + xe^{-y}) dy = 0$.

10.3. Solve the following equations by finding an integrating factor:

(a)
$$y^2 dx - (xy + x^3) dy = 0;$$
 (b) $\left(y - \frac{1}{x}\right) dx + \frac{dy}{y} = 0.$

10.4. Solve the following homogeneous equations:

(a)
$$x^2 \frac{dy}{dx} = y(x+y);$$
 (b) $\left(x \sec \frac{y}{x} + y\right) dx - x dy = 0.$

10.5. Solve the following equations:

(a)
$$\frac{dy}{dx} - \frac{2y}{x} = -x^2y^2$$
, $y(1) = 1$;

(b)
$$2xy^3 \frac{dy}{dx} + y^4 = 1$$
, $y(1) = 0$;

10.6. (\star) Newton's law of cooling can be written in the form

$$\frac{dT(t)}{dt} = -k(T(t) - T_0),$$

where t is time, T = T(t) is the temperature of an object, $T_0 < T$ is the temperature of the outside medium, and k is a positive constant. Using Newton's law of cooling, determine how long it takes for a cup of tee at the initial temperature of 90° to cool down to 40°. The outside temperature is 20°. Express the answer through k. Give a rough estimate for k based on your experience.