ESM 1B, Homework 3

Due Date: 14:00 Thursday, October 1, 2009.
Explain your answers! Problems marked (\star) are bonus ones.
3.1. Find all first-order partial derivatives of the following functions:
(a) $f(x, y)=x-y+\sin (x y)$;
(b) $f(x, y, z)=\tan ^{-1}(y z / x)$.

For the function in (a), find all second-order partial derivatives.
Verify by explicit computation that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ in this example.
3.2. Suppose that a function $f(x, y)$ satisfies the following equation:

$$
\frac{\partial^{2} f}{\partial x \partial y}=0
$$

Prove that $f(x, y)=g(x)+h(y)$, where g and h are functions of one variable.
3.3. For the following differentials, determine whether they are exact:
(a) $x d x+y d y$;
(b) $x d y+y d x$;
(c) $x d y-y d x$;
(d) $(y \cos (x y)+1) d x+x \cos (x y) d y$.

For the exact differentials, find the corresponding potentials.
3.4. Cylindrical coordinates (ρ, ϑ, ζ) are defined by the following formulas:

$$
x=\rho \cos \vartheta, \quad y=\rho \sin \vartheta, \quad z=\zeta
$$

where (x, y, z) are the Cartesian coordinates. Suppose that $f(x, y, z)$ is a function, whose partial derivatives with respect to the Cartesian coordinates are known. Write a formula for the partial derivatives of f with respect to the cylindrical coordinates.
3.5. The equation

$$
3 y=z^{3}+3 x z
$$

defines z as an implicit function of x and y. Evaluate all the three second order partial derivatives of z with respect to x and y.
Verify that z is a solution of equation

$$
x \frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial^{2} z}{\partial x^{2}}=0
$$

3.6. (a) Compute directional derivative of the function

$$
f(x, y)=x e^{x / y}
$$

at the point $(1,1)$ along the vector $(1,-1)$.
(b) (\star) Consider the function

$$
f(x, y)=g(x+\sin y)+h(\cos (x y))
$$

Find the directional derivative of f at the point $(\pi, \pi / 2)$ along the vector $(1,1)$ in terms of the derivatives of g and h.

