School of Engineering and Science

ESM 1B, Homework 4

Due Date: 14:00 Thursday, October 8, 2009.

Explain your answers! Problems marked (\star) are bonus ones.
4.1. Using the chain rule, transform the equation

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{\partial^{2} \varphi}{\partial y^{2}}
$$

to new coordinates $s=\frac{1}{2}(x+y), t=\frac{1}{2}(x-y)$. Show that φ has the form

$$
f(x+y)+g(x-y)
$$

for some functions f and g of one variable.
4.2. Suppose that a function f satisfies the equation

$$
y f_{x}+x f_{y}=0
$$

Transform this equation to new coordinates $s=x^{2}-y^{2}, t=2 x y$ to show that f is a function of $x^{2}-y^{2}$ only.
4.3. Find the second-order approximation of the following function at $(1,2)$:

$$
f(x, y)=\exp \left(x^{2}+y^{2}\right)
$$

4.4. Find all stationary points of the function

$$
f(x, y)=x^{3}+2 x^{2}-x-y^{3}+3 y^{2}+3 y+6
$$

Determine the nature of the stationary points (maxima, minima, saddle points or none of these).
4.5. The temperature of a point (x, y, z) on the unit sphere $x^{2}+y^{2}+z^{2}=1$ is given by

$$
T(x, y, z)=1+x y-y z
$$

Find the temperature of the hottest and the coldest points on the sphere.
4.6. Give an example of a function on \mathbb{R}^{2} having
(a) a local minimum at $(0,0)$ and a local maximum at $(1,0)$;
$(\mathrm{b})(\star)$ a local maximum at $(0,0)$ and local minima at $(1,0),(0,1),(-1,0),(0,-1)$;
$(c)(\star)$ saddle points at $(0,0),(1,1),(-1,-1),(-1,1)$, and $(1,-1)$.

