Jacobs University School of Engineering and Science

ESM 1B, Homework 5

Due Date: 14:00 Thursday, October 22, 2009.

Explain your answers! Problems marked (\star) are bonus ones.

5.1. Find the stationary points of $f(x, y, z) = x^3 + y^3 + z^3$ subject to the following constraints

$$x^{2} + y^{2} + z^{2} = 1$$
, $x + y + z = 1$.

5.2. A rectangular parallelepiped is symmetric with respect to planes x = 0, y = 0, z = 0, and has all eight vertices on the ellipsoid

$$x^2 + 3y^2 + 3z^2 = 1.$$

Find the maximal and the minimal surface area and volume of such a parallelepiped.

5.3. Find the area of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1.$$

Hint: reduce the problem to finding the area under the graph of some function.

5.4. Evaluate the integral of f(x, y) over rectangle $0 \le x \le a, 0 \le y \le b$ for the functions

(a)
$$f(x,y) = \frac{2x}{x^2 + y^2}$$
; (b) $f(x,y) = (b - y + x)^{-3/2}$.

5.5. Evaluate the integral of

$$f(x, y, z) = x^2 + y^2 + z^2$$

over the rectangular parallelepiped bounded by six planes $x = \pm a$, $y = \pm b$, $z = \pm c$. 5.6. (*) Let $f(x, y) = x^2 - y$, and define F(x, y) as

$$F(x,y) = \begin{cases} x^2 - y + e^{-1/x^2} \sin \frac{1}{x}, & x \neq 0, \\ x^2 - y, & x = 0 \end{cases}$$

Find extrema of f(x, y) under constraints F(x, y) = 0.