ESM 1B, Homework 6

Due Date: 14:00 Thursday, October 29, 2009.

Explain your answers! Problems marked (\star) are bonus ones.
6.1. Compute the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ for the following changes of coordinates:
(a) $x=u v \cos w, \quad y=u v \sin w, \quad z=\frac{1}{2}\left(u^{2}-v^{2}\right) \quad$ (parabolic coordinates);
(b) $x=f(u+v), \quad y=g(u-v), \quad z=w$.

In (b), express the answer in terms of the derivatives of the functions f and g.
6.2. Find the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

in terms of the parameters $a, b, c>0$.
Hint: consider the following change of variables: $x=a u, \quad y=b v, \quad z=c w$.
6.3. Let D be a 3 -dimensional body. The moment of inertia of D (with respect to $(0,0,0)$) is defined as

$$
\iiint_{D} r^{2} \rho(x, y, z) d x d y d z
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ is the distance of point (x, y, z) to $(0,0,0)$, and $\rho(x, y, z)$ is the density at point (x, y, z). Find the moment of inertia for the cylinder

$$
x^{2}+y^{2} \leq a^{2}, \quad 0 \leq z \leq b
$$

with uniform density ρ_{0}.
6.4. (a) Prove the Leibniz rule for differentiation of the cross-product:

$$
\frac{d}{d t}(\vec{a}(t) \times \vec{b}(t))=\left(\frac{d}{d t} \vec{a}(t)\right) \times \vec{b}(t)+\vec{a}(t) \times\left(\frac{d}{d t} \vec{b}(t)\right) .
$$

(b) Suppose that a particle moves with uniform speed. Show that the acceleration vector is perpendicular to the velocity vector.
Hint: use the equation $\vec{v}(t) \cdot \vec{v}(t)=$ const.
6.5. (\star) Let $f:[a, b] \rightarrow \mathbb{R}$ be a real function. Find the volume of the 3-dimensional domain D defined by inequalities

$$
D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a \leq z \leq b, x^{2}+y^{2} \leq f^{2}(z)\right\}
$$

in terms of one-variable integral involving the function $f(z)$.

