ESM 1B, Homework 8

Due Date: 14:00 Thursday, November 12, 2009.

Explain your answers! Problems marked (\star) are bonus ones.
8.1. Consider the curve in the plane given by the equation $y=f(x)$. Find the curvature of this curve at point $(x, f(x))$ in terms of the derivatives of f.
8.2. Let f, g be scalar fields, and let \vec{u}, \vec{v} be vector fields. Prove the following formulas.
(a) $\operatorname{curl}(\operatorname{grad} f)=0$;
(b) $\operatorname{curl}(f \vec{u})=(\operatorname{grad} f) \times \vec{u}+f$ curl \vec{u};
(c) $\operatorname{div}(\vec{u} \times \vec{v})=\vec{v} \cdot(\operatorname{curl} \vec{u})-\vec{u} \cdot(\operatorname{curl} \vec{v})$;
(d) $\operatorname{div}(\operatorname{grad} f \times \operatorname{grad} g)=0$.
8.3. Let $(\rho, \vartheta, \varphi)$ be spherical coordinates:

$$
x=\rho \sin \vartheta \cos \varphi, \quad y=\rho \sin \vartheta \sin \varphi, \quad z=\rho \cos \vartheta
$$

Let $\vec{e}_{\rho}, \vec{e}_{\vartheta}$ and \vec{e}_{φ} be the unit vectors of the same direction as the partial derivatives

$$
\frac{\partial \vec{r}}{\partial \rho}, \quad \frac{\partial \vec{r}}{\partial \vartheta}, \quad \frac{\partial \vec{r}}{\partial \varphi} .
$$

Prove that the gradient of a scalar field f has the following expression in the cylindrical coordinates:

$$
\nabla f=\frac{\partial f}{\partial \rho} \vec{e}_{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \vartheta} \vec{e}_{\vartheta}+\frac{1}{\rho \sin \vartheta} \frac{\partial f}{\partial \varphi} \vec{e}_{\varphi} .
$$

You may use the textbook but please give a detailed and complete computation.
8.4. Deduce from Maxwell equations that

$$
\operatorname{div} \mathbf{j}=-\frac{\partial \rho}{\partial t}
$$

8.5. (\star) Let $f=1 / r$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Write down the expression for vector field $\vec{u}=\operatorname{grad} f$
(a) in Cartesian coordinates;
(b) in cylindrical coordinates;
(c) in spherical coordinates.
(d) Compute div \vec{u} and curl \vec{u}.

