Perspectives of Mathematics I

Fall 2009

Hyperbolic geometry-1 Upper half-plane model

Practice list

Consider the upper half-plane $\mathbb{H}_+ = \{z \mid \text{Im } z > 0\}$. We look at \mathbb{H}_+ as a model of the hyperbolic plane. First, we give \mathbb{H}_+ the metric

$$ds = \frac{|dz|}{\operatorname{Im} z}.$$

The lines (geodesics) are vertical rays and semicircles orthogonal to $\partial \mathbb{H}_+$. The angles are Euclidean angles. From now on "the plane" means the hyperbolic plane \mathbb{H}_+ . The boundary $\partial \mathbb{H}_+ = \mathbb{R} \cup \{\infty\}$ is called *the absolute*.

- 1. How many non-intersecting half-planes can you draw on \mathbb{H}_+ ?
- 2. Which lines you would say to be parallel?
- 3. Consider a line l and a point $z \notin l$. How many lines parallel to l contain z?
- 4. a) Show that transformations $z \to -\overline{z} + 2a$ and $z \to \frac{r^2}{\overline{z}-a} + a$, $a, r \in \mathbb{R}, r > 0$, preserve \mathbb{H}_+ . What is the geometric meaning of these maps?
 - b)* Show that these transformations preserve the metric form on \mathbb{H}_+ .

The transformations from Ex. 4 are called *reflections*. We proved that any reflection is an isometry of \mathbb{H}_+ .

5. Prove that any transformation of the form $\frac{az+b}{cz+d}$, $a, b, c, d \in \mathbb{R}$, ad - bc > 0, and $\frac{a\overline{z}+b}{c\overline{z}+d}$, $a, b, c, d \in \mathbb{R}$, ad - bc < 0 is a product of several reflections.

Thus, these transformations are isometries of \mathbb{H}_+ . Möbius transformations are orientation-preserving isometries. Transformations of the form $\frac{a\overline{z}+b}{c\overline{z}+d}$ are orientation-reversing isometries.

- 6. Find an isometry that maps
 - a) an arbitrary point $z \in \mathbb{H}_+$ to $w \in \mathbb{H}_+$;
 - b) an arbitrary line to another fixed line;
 - c) a triple of points of $\partial \mathbb{H}_+$ to $(0, 1, \infty)$.
- 7. How many reflections you need to map any triple of points of $\partial \mathbb{H}_+$ to another triple?
- 8. a) Show that if an isometry fixes all points of absolute then it is identity map.
 - b) Show that if an isometry fixes three points of absolute then it is identity map.
- 9. Show that any orientation-preserving isometry is a Möbius map.
- 10. Find the distance $d(z_1, z_2)$ between two points $z_1 = x + iy_1$ and $z_2 = x + iy_2$.
- 11. Check the distance formula

$$\cosh d(z, w) = 1 + \frac{|z-w|^2}{2\operatorname{Im}(z)\operatorname{Im}(w)},$$

where $\cosh t = \frac{1}{2}(e^t + e^{-t})$ is the hyperbolic cosine.