Inversion

Practice list

For a circle C in the Euclidean plane the inversion i_{C} in C is the unique map from the complement of C to itself that fixes any point of C, exchanges the interior and exterior of C and takes circles orthogonal to C to themselves.

1. (a) Show the following fact from Euclidean geometry: If A is a point outside a circle C and l is a line through A intersecting C at P and P^{\prime}, the product $A P \cdot A P^{\prime}$ is independent of l and equals $A T^{2}$, where $A T$ is a segment tangent to C at T.
(b) Show that if a circle C has center O and radius r, and a circle C_{1} is orthogonal to C and contains a point P, then C_{1} contains a point P^{\prime} on the ray $\overline{O P}$ such that $O P \cdot O P^{\prime}=r^{2}$.
(c) Show that inversion is well-defined by proving that $i_{C}(P)=P^{\prime}$.
2. (a) Denote by F_{t} the family of circles through $x \in C$ tangent to C. Show that $i_{C}\left(F_{t}\right)=F_{t}$. (Hint: consider the family F_{o} of circles through x orthogonal to C.)
(b) Denote by T_{λ} the homothety with coefficient λ centered at the center of C. Show that $i_{C} \circ T_{\lambda}=T_{1 / \lambda} \circ i_{C}$.
(c) If O is the center of C, the inversion i_{C} takes

- circles through O to lines;
- rest circles to circles;
- lines through O to themselves;
- rest lines to circles through O.

3. Let C be the circle $x^{2}+y^{2}=1$. Draw the image $i_{C}(P)$, where P is
(a) the circle $(x-4)^{2}+y^{2}=4$;
(b) the circle $(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}=1$;
(c) the line $x=\frac{1}{2}$;
(d) the square with vertices $(-1,1),(1,-1),(-1,-3),(-3,-1)$;
(e) the upper half-plane $y \geq 0$.
4. Let i_{C} be the inversion in the circle C. Let C_{1} and C_{2} be a pair of tangent circles. Find the image $i_{C}\left(C_{1} \bigcup C_{2}\right)$. How does it depend on C ?
5. Show that i_{C} is conformal, i.e. it preserves angles.
6. Show that for any pair of non-intersecting circles C_{1} and C_{2} there exists a circle C such that i_{C} takes C_{1} and C_{2} to concentric circles.
