Möbius transformations

Practice list

1. What is the geometric meaning of the transformation
(a) $z \rightarrow a z, a \in \mathbb{C},|a|=1$;
(b) $z \rightarrow a z, a \in \mathbb{R}$;
(c) $z \rightarrow a z, a \in \mathbb{C}$;
(d) $z \rightarrow z+a, a \in \mathbb{C}$.
2. What is the geometric meaning of the transformation $w: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}, w(z)=\frac{1}{\bar{z}}$?

A Möbius map is a map which can be written in the form $g(z)=\frac{a z+b}{c z+d}, a d-b c=1$. This map acts on $\overline{\mathbb{C}}$ with the natural definition $g(\infty)=a / c$ and $g(-d / c)=\infty$ when $c \neq 0$, and $g(\infty)=\infty$ when $c=0$.
3. (a) Show that the set of Möbius maps is a group;
(b) show that any Möbius map can be represented as a composition of transformations $z \rightarrow \frac{1}{z}, z \rightarrow z+a$ and $z \rightarrow b z$ for some $a, b \in \mathbb{C}$.
(c) show that any Möbius transformation takes lines and circles to lines and circles;
(d) show that Möbius maps preserve angles.
4. Let $\left(u_{1}, u_{2}, u_{3}\right)$ and $\left(v_{1}, v_{2}, v_{3}\right)$ be triples of points of $\overline{\mathbb{C}}$. Find a Möbius map g, such that $g\left(u_{k}\right)=v_{k}$ for $k=1,2,3$.
5. Show that if a Möbius map fixes at least three non-collinear points then it is the identity map.
6. (a) Find all Möbius maps that preserve the real axis;
(b) Find all Möbius maps that preserve the disk $|z| \leq 1$.
7. Show that Möbius transformations preserve cross ratio

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{z_{3}-z_{1}}{z_{3}-z_{2}}: \frac{z_{4}-z_{1}}{z_{4}-z_{2}}
$$

of four points.
8. Find all Möbius maps that take the upper half-plane $\operatorname{Im} z>0$ to the unit disk $|z| \leq 1$.

