Perspectives in Mathematics I, Homework 2

Due Date: Wednesday, October 14, in class.

Explain your answers! Problems marked (\star) are bonus ones.
2.1. Show that points $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ are collinear (belong to one line) if and only if $\frac{z_{1}-z_{2}}{z_{1}-z_{3}} \in \mathbb{R}$.
2.2. (a) Show that points $A, B, C, D \in \mathbb{R}^{2}$ lie on one circle if and only if $\angle A B C+\angle A D C=\pi$.
(b) Use part (a) to show that $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$ lie on one circle or one line if and only if $\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \in \mathbb{R}$.
2.3. (a) Find a Moebius transformation taking 0,1 , and 2 to $-1,0$, and ∞ respectively.
(b) Find a Moebius transformation f taking the upper half-plane $\operatorname{Im} z>0$ to the unit disk with $f(i)=0$.
(c) Draw the images of the sets $\{z \in \mathbb{C} \mid \operatorname{Re} z \in \mathbb{Z}\}$ and $\{z \in \mathbb{C} \mid \operatorname{Im} z \in \mathbb{Z}\}$ under the map constructed in (b).
2.4. (a) Find the infimum and supremum of the sum of angles of a polygon with n sides.
(b) Given an acute-angled polygon P and two lines l and m containing two disjoint egdes of P, show that l and m are disjoint.
2.5. (a) Show that any pair of parallel lines can be transformed to any other pair of parallel lines by an isometry.
(b) Show that all horocycles are pairwise congruent.
2.6. (a)(($)$ Given a point C moving along an arc $A B$ of a circle or horocycle, prove that $\angle A B C+$ $\angle B A C-\angle A C B$ is constant.
$(\mathrm{b})(\star)$ Given a convex quadrilateral $A B C D$ with equal opposite sides, show that the lines containing sides $A B$ and $C D$ diverge.

