Perspectives in Mathematics I, Midterm problems

Due Date: Monday, November 2, in class.

Explain your answers! Problems marked (\star) are bonus ones.

- **M.1.** (a) Solve the equation |z|z = -1.
 - (b) Find the locus $\mathcal{R}e((z+1)/z) = 1$.
- **M.2.** Find a circle C such that the inversion i_C takes the unit circle to the line $z + \overline{z} = -2$.
- **M.3.** Find any Möbius map taking the domain $\{i(\overline{z} z) > \overline{z} + z > 0\}$ to the domain $\{z\overline{z} < 2, z + \overline{z} > 2\}$.
- **M.4.** Let P_1 be a hyperbolic triangle with vertices $(\infty, e^{\frac{\pi i}{3}}, e^{\frac{2\pi i}{3}})$, and let P_2 be a triangle with vertices $(0, e^{\frac{\pi i}{3}}, \frac{1+i}{2})$. If P_1 is congruent to P_2 ?
- **M.5.** Let AB and CD be congruent closed intervals on the sphere. Show that there exists a point M on the sphere, such that triangles MAB and MCD are congruent.
- **M.6.** Show that the diameter of a circle inscribed in a triangle in \mathbb{H}^2 does not exceed log 3.
- M.7. Is it possible to tile a regular hyperbolic triangle with side of length 100 by regular triangles with side of length 1?

M.8. What is the type of a composition of reflections in consequtive sides of P, if P is

- (a) an ideal triangle in \mathbb{H}^2 ?
- (b)(\star) a regular ideal quadrilateral in \mathbb{H}^2 ?
- **M.9.** (*) Let f be a linear-fractional transformation of \mathbb{RP}^1 such that $f(x_0) \neq x_0$ and $f(f(x_0)) = x_0$ for some $x_0 \in \mathbb{RP}^1$. Show that f(f(x)) = x for every $x \in \mathbb{RP}^1$.