School of Engineering and Science

Perspectives in Mathematics I, Midterm problems

Due Date: Monday, November 2, in class.

Explain your answers! Problems marked (\star) are bonus ones.
M.1. (a) Solve the equation $|z| z=-1$.
(b) Find the locus $\mathcal{R} e((z+1) / z)=1$.
M.2. Find a circle C such that the inversion i_{C} takes the unit circle to the line $z+\bar{z}=-2$.
M.3. Find any Möbius map taking the domain $\{i(\bar{z}-z)>\bar{z}+z>0\}$ to the domain $\{z \bar{z}<2, z+\bar{z}>2\}$.
M.4. Let P_{1} be a hyperbolic triangle with vertices $\left(\infty, e^{\frac{\pi i}{3}}, e^{\frac{2 \pi i}{3}}\right)$, and let P_{2} be a triangle with vertices $\left(0, e^{\frac{\pi i}{3}}, \frac{1+i}{2}\right)$. If P_{1} is congruent to P_{2} ?
M.5. Let $A B$ and $C D$ be congruent closed intervals on the sphere. Show that there exists a point M on the sphere, such that triangles $M A B$ and $M C D$ are congruent.
M.6. Show that the diameter of a circle inscribed in a triangle in \mathbb{H}^{2} does not exceed $\log 3$.
M.7. Is it possible to tile a regular hyperbolic triangle with side of length 100 by regular triangles with side of length 1 ?
M.8. What is the type of a composition of reflections in consequtive sides of P, if P is
(a) an ideal triangle in \mathbb{H}^{2} ?
$(\mathrm{b})(\star)$ a regular ideal quadrilateral in \mathbb{H}^{2} ?
M.9. (\star) Let f be a linear-fractional transformation of $\mathbb{R P}^{1}$ such that $f\left(x_{0}\right) \neq x_{0}$ and $f\left(f\left(x_{0}\right)\right)=x_{0}$ for some $x_{0} \in \mathbb{R P}^{1}$. Show that $f(f(x))=x$ for every $x \in \mathbb{R} \mathbb{P}^{1}$.

