Complex Analysis, Homework 1

- **1.1.** A real manifold is *oriented* if for some atlas the Jacobian of any transition map is positive. Show that any Riemann surface is an oriented real manifold.
- **1.2.** Show that the exponential map $\exp : \mathbb{C} \to \mathbb{C}^*$ is a covering. Prove that \mathbb{C}^* is isomorphic (as Riemann surface) to the quotient \mathbb{C}/L , where $L = 2\pi i \mathbb{Z}$.
- **1.3.** Prove the *Maximum Principle*: if f is a holomorphic non-constant function on a connected open set U of a Riemann surface X, then f has no maximum in U.
- **1.4.** Let L be a lattice in \mathbb{C} , and $\lambda \in \mathbb{C}^*$.

(a) Show that the map $\varphi : \mathbb{C}/L \to \mathbb{C}/(\lambda L)$ assigning to every class z + L the class $\lambda z + \lambda L$ is an isomorphism.

(b) Show that every complex torus is isomorphic to \mathbb{C}/L for $L = \mathbb{Z} + \mathbb{Z}\tau$, where $|\operatorname{Re} \tau| \leq 1/2$, $\operatorname{Im} \tau > 0$, and $|\tau| \geq 1$ (the domain *D* defined by these three inequalities is called *modular figure*).

(c) The group $SL_2(\mathbb{Z})$ of integer 2×2 matrices with unit determinant acts on the upper half-plane by linear-fractional transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$$

Let L be a lattice, and $\gamma \in SL_2(\mathbb{Z})$. Show that \mathbb{C}/L coincides with $\mathbb{C}/\gamma L$.

- $(d)(\star)$ Show that if z is an interior point of D, and $\gamma \in SL_2(\mathbb{Z})$, then $gz \notin D$.
- $(e)(\star)$ Show that D is the fundamental domain for the action of $SL_2(\mathbb{Z})$ on \mathbb{H} , i.e.

$$\bigcup_{\gamma \in SL_2(\mathbb{Z})} \gamma D = \mathbb{H}, \text{ and } D \cap \gamma D \text{ has no interior points for any } \gamma \in SL_2(\mathbb{Z})$$

- **1.5.** Show that a holomorphic map $f : X \to Y$ of compact Riemann surfaces is biholomorphic if and only if it has degree one.
- **1.6.** Find singular points of the following curves in $\mathbb{C}P^2$:

(a)
$$y^2 z = x^3$$
; (b) $y^2 z^{n-2} = \prod_{i=1}^n (x - a_i z), n \ge 4$

- **1.7.** Let X be a smooth projective curve defined by equation F(x, y, z) = 0, where F is a homogeneous polynomial of degree d. The number d is called the *degree* of X. Define a projection $\pi : \mathbb{C}P^2 \setminus (0:0:1) \to \mathbb{C}P^1, \pi(x:y:z) = (x:y).$
 - (a) What is the preimage $\pi^{-1}(z)$ for arbitrary $z \in \mathbb{C}P^1$?
 - (b) Show that the restriction $\pi: X \to \mathbb{C}P^1$ is a (ramified) covering of degree d.
- **1.8.** Let $\varphi : f_1 \to f_2$ be a morphism of (ramified) coverings $f_1 : X_1 \to Y$ and $f_2 : X_2 \to Y$, and let $x_2 \in X_2, x_1 \in \varphi^{-1}(x_2)$. Let k_2 be the ramification index of f_2 at x_2 , and k_1 be the ramification index of f_1 at x_1 . Show that $k_2 \mid k_1$.
- **1.9.** Show that three Riemann surfaces \mathbb{H} , \mathbb{C} and $\widehat{\mathbb{C}}$ are mutually non-isomorphic.