## Complex Analysis, Homework 1

1.1. A real manifold is oriented if for some atlas the Jacobian of any transition map is positive. Show that any Riemann surface is an oriented real manifold.
1.2. Show that the exponential map $\exp : \mathbb{C} \rightarrow \mathbb{C}^{*}$ is a covering. Prove that $\mathbb{C}^{*}$ is isomorphic (as Riemann surface) to the quotient $\mathbb{C} / L$, where $L=2 \pi i \mathbb{Z}$.
1.3. Prove the Maximum Principle: if $f$ is a holomorphic non-constant function on a connected open set $U$ of a Riemann surface $X$, then $f$ has no maximum in $U$.
1.4. Let $L$ be a lattice in $\mathbb{C}$, and $\lambda \in \mathbb{C}^{*}$.
(a) Show that the map $\varphi: \mathbb{C} / L \rightarrow \mathbb{C} /(\lambda L)$ assigning to every class $z+L$ the class $\lambda z+\lambda L$ is an isomorphism.
(b) Show that every complex torus is isomorphic to $\mathbb{C} / L$ for $L=\mathbb{Z}+\mathbb{Z} \tau$, where $|\operatorname{Re} \tau| \leq 1 / 2$, $\operatorname{Im} \tau>0$, and $|\tau| \geq 1$ (the domain $D$ defined by these three inequalities is called modular figure).
(c) The group $S L_{2}(\mathbb{Z})$ of integer $2 \times 2$ matrices with unit determinant acts on the upper half-plane by linear-fractional transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

Let $L$ be a lattice, and $\gamma \in S L_{2}(\mathbb{Z})$. Show that $\mathbb{C} / L$ coincides with $\mathbb{C} / \gamma L$.
$(\mathrm{d})(\star)$ Show that if $z$ is an interior point of $D$, and $\gamma \in S L_{2}(\mathbb{Z})$, then $g z \notin D$.
$(\mathrm{e})(\star)$ Show that $D$ is the fundamental domain for the action of $S L_{2}(\mathbb{Z})$ on $\mathbb{H}$, i.e.

$$
\bigcup_{\gamma \in S L_{2}(\mathbb{Z})} \gamma D=\mathbb{H}, \text { and } D \cap \gamma D \text { has no interior points for any } \gamma \in S L_{2}(\mathbb{Z})
$$

1.5. Show that a holomorphic map $f: X \rightarrow Y$ of compact Riemann surfaces is biholomorphic if and only if it has degree one.
1.6. Find singular points of the following curves in $\mathbb{C} P^{2}$ :
(a) $y^{2} z=x^{3}$;
(b) $y^{2} z^{n-2}=\prod_{i=1}^{n}\left(x-a_{i} z\right), n \geq 4$.
1.7. Let $X$ be a smooth projective curve defined by equation $F(x, y, z)=0$, where $F$ is a homogeneous polynomial of degree $d$. The number $d$ is called the degree of $X$. Define a projection $\pi: \mathbb{C} P^{2} \backslash$ $(0: 0: 1) \rightarrow \mathbb{C} P^{1}, \pi(x: y: z)=(x: y)$.
(a) What is the preimage $\pi^{-1}(z)$ for arbitrary $z \in \mathbb{C} P^{1}$ ?
(b) Show that the restriction $\pi: X \rightarrow \mathbb{C} P^{1}$ is a (ramified) covering of degree $d$.
1.8. Let $\varphi: f_{1} \rightarrow f_{2}$ be a morphism of (ramified) coverings $f_{1}: X_{1} \rightarrow Y$ and $f_{2}: X_{2} \rightarrow Y$, and let $x_{2} \in X_{2}, x_{1} \in \varphi^{-1}\left(x_{2}\right)$. Let $k_{2}$ be the ramification index of $f_{2}$ at $x_{2}$, and $k_{1}$ be the ramification index of $f_{1}$ at $x_{1}$. Show that $k_{2} \mid k_{1}$.
1.9. Show that three Riemann surfaces $\mathbb{H}, \mathbb{C}$ and $\widehat{\mathbb{C}}$ are mutually non-isomorphic.

