Complex Analysis, Homework 2

- **2.1.** Let $f_i : X_i \to Y_i$, i = 1, 2, be ramified coverings, and $\psi : f_1 \to f_2$ is a morphism of coverings. Let $x_2 \in X_2, x_1 \in \psi^{-1}(x_2)$. Show that $\operatorname{mult}_{x_2}(f_2)$ divides $\operatorname{mult}_{x_1}(f_1)$.
- **2.2.** (\star) Prove uniqueness of topological uniformization (up to isomorphism).
- **2.3.** Let X be a Riemann surface, $\Gamma \subset \operatorname{Aut}(X)$ is discrete, and $\Gamma' \subset \Gamma$. Show that the natural map $X/\Gamma' \to X/\Gamma$ is a covering of Riemann surfaces.
- **2.4.** The Fermat curve of degree d is given by equation $x^d + y^d + z^d = 0$ in \mathbb{P}^2 .
 - (a) Show that Fermat curve is smooth.

(b) Show that the map f from the Fermat curve to \mathbb{P}^1 defined by $f: (x:y:z) \to (x:y)$ is a holomorphic map of degree d.

- (c) Find all ramification and branch points of f.
- (d) Use Riemann-Hurwitz formula to find the genus of the Fermat curve.
- (e) Let d = 2. Show that the Fermat curve is isomorphic to \mathbb{P}^1 .
- **2.5.** The Klein curve X is defined by $xy^3 + yz^3 + zx^3 = 0$ in \mathbb{P}^2 . Using the fact g(X) = 3, show that $|\operatorname{Aut}(X)| = 84(g-1)$.
- **2.6.** (a) A line in \mathbb{P}^2 is a curve of degree 1. Show that any line is smooth and isomorphic to \mathbb{P}^1 .

(b) A *conic* in \mathbb{P}^2 is a curve of degree 2. Changing coordinates, show that every smooth conic is isomorphic to the Fermat curve of degree 2 (and thus, to \mathbb{P}^1).

2.7. Let $L \subset \mathbb{C}$ be a lattice of rank 2. Show that L contains at most 6 roots of unity.