Complex Analysis, Homework 4

4.1. Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a meromorphic function defined by

$$
f(z)=\frac{4\left(z^{2}-z+1\right)^{3}}{27 z^{2}(z-1)^{2}}
$$

(a) Show that f defines a Galois covering $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} / \Gamma$, where Γ is isomorphic to symmetric group S_{3} and generated by automorphisms of $\hat{\mathbb{C}} \quad z \rightarrow 1-z$ and $z \rightarrow 1 / z$.
(b) Solving the equation $f^{\prime}(z)=0$, find the ramification points.
(c) Compute the ramification divisor R_{f}.
4.2. Let X be a compact Riemann surface, and suppose that there exists a meromorphic function f on X having precisely two simple poles. Show that X is hyperelliptic.
4.3. Let $P(z) / Q(z)$ be a meromorphic function on $\hat{\mathbb{C}}, \operatorname{deg} P \leq \operatorname{deg} Q-2$, and Q has no multiple roots. Show that

$$
\sum_{a: Q(a)=0} \frac{P(a)}{Q^{\prime}(a)}=0
$$

4.4. Let $f: X \rightarrow Y$ be a Galois covering with Galois group Γ (i.e. $Y=X / \Gamma$). Show that $f^{*}\left(\Omega_{H}(Y)\right)$ coincides with the set of holomorphic 1-forms on X that are invariant under Γ.
4.5. Compute the canonical map for the Fermat curve $x^{4}+y^{4}+z^{4}=0$.
4.6. Let X be a hyperelliptic curve $y^{2}=\prod_{i=1}^{n}\left(x-a_{i}\right)$. Consider x and y as meromorphic functions on X. Compute the proncipal divisors (x) and (y). Does the result depend on the parity of n ?
4.7. (a) Let X be an elliptic curve. Show that canonical divisors are exactly principal divisors.
(b) Let X be a projective curve defined by $y^{2} z=x^{3}-x z^{2}$. Compute the intersection divisors for coordinate hyperplanes $x=0, y=0$, and $z=0$.
(c) Show that two divisors on $\hat{\mathbb{C}}$ are linearly equivalent if and only if they have the same degree.

