Complex Analysis, Final exam

Three of 7 problems are bonus ones.

In all the problems X, Y denote compact Riemann surfaces, g(X) is the genus of X.

- **F.1.** (a) Let $f : \mathbb{P}^1 \to Y$ be a non-constant holomorphic map. Show that Y is isomorphic to \mathbb{P}^1 . (b) Let $f : X \to Y$ be a non-constant holomorphic map. Is it true that $g(X) \ge g(Y)$?
- **F.2.** Compute the number of mutually non-isomorphic non-ramified coverings of degree 4 of a given elliptic curve.
- **F.3.** (a) Show that diameter of a (hyperbolic) circle inscribed into a hyperbolic triangle does not exceed ln 3.

(b) Is it possible to tile a regular hyperbolic triangle with side of length 100 by copies of a regular hyperbolic triangle with side of length 1?

F.4. Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a meromorphic function defined by

$$f(z) = \frac{z(z-2)}{z^2 - z + 1}$$

- (a) Show that f defines a Galois covering $\hat{\mathbb{C}} \to \hat{\mathbb{C}}/\Gamma$, and find Γ explicitly.
- (b) Find the ramification points of f and compute the ramification divisor R_f .
- **F.5.** Denote by X_d a Fermat curve of degree d in \mathbb{P}^2 , i.e. X_d is given by equation

$$x^d + y^d + z^d = 0$$

- (a) Show that X_4 is not hyperelliptic.
- (b) Show that X_d is not hyperelliptic for any $d \ge 4$.
- (c) Is it true that any smooth projective curve of degree at least 4 in \mathbb{P}^2 is not hyperelliptic?
- **F.6.** Define hyperelliptic curves X_1 and X_2 in \mathbb{P}^2 by equations

$$y^2 = x^3 - 2x + 1$$
 and $y^2 = x^{2011} - 1$

respectively. Denote by φ_i the covering $X_i \to \hat{\mathbb{C}}, \ \varphi_i(x,y) = x$.

Let $\omega = y^3 dy$ be a meromorphic 1-form on X_1 . Show that there exists a meromorphic 1-form $\tilde{\omega}$ on $\hat{\mathbb{C}}$ such that $\omega = \varphi_1^* \tilde{\omega}$. Compute the divisor $(\varphi_2^* \tilde{\omega})$ of $\varphi_2^* \tilde{\omega}$.

- F.7. Show that on every Riemann surface of genus 3 there exists at least one meromorphic function of degree
 - (a) at most 4;
 - (b) at most 3.