Complex Analysis, Final exam

Three of 7 problems are bonus ones.
In all the problems X, Y denote compact Riemann surfaces, $g(X)$ is the genus of X.
F.1. (a) Let $f: \mathbb{P}^{1} \rightarrow Y$ be a non-constant holomorphic map. Show that Y is isomorphic to \mathbb{P}^{1}.
(b) Let $f: X \rightarrow Y$ be a non-constant holomorphic map. Is it true that $g(X) \geq g(Y)$?
F.2. Compute the number of mutually non-isomorphic non-ramified coverings of degree 4 of a given elliptic curve.
F.3. (a) Show that diameter of a (hyperbolic) circle inscribed into a hyperbolic triangle does not exceed $\ln 3$.
(b) Is it possible to tile a regular hyperbolic triangle with side of length 100 by copies of a regular hyperbolic triangle with side of length 1 ?
F.4. Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a meromorphic function defined by

$$
f(z)=\frac{z(z-2)}{z^{2}-z+1}
$$

(a) Show that f defines a Galois covering $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} / \Gamma$, and find Γ explicitly.
(b) Find the ramification points of f and compute the ramification divisor R_{f}.
F.5. Denote by X_{d} a Fermat curve of degree d in \mathbb{P}^{2}, i.e. X_{d} is given by equation

$$
x^{d}+y^{d}+z^{d}=0
$$

(a) Show that X_{4} is not hyperelliptic.
(b) Show that X_{d} is not hyperelliptic for any $d \geq 4$.
(c) Is it true that any smooth projective curve of degree at least 4 in \mathbb{P}^{2} is not hyperelliptic?
F.6. Define hyperelliptic curves X_{1} and X_{2} in \mathbb{P}^{2} by equations

$$
y^{2}=x^{3}-2 x+1 \quad \text { and } \quad y^{2}=x^{2011}-1
$$

respectively. Denote by φ_{i} the covering $X_{i} \rightarrow \hat{\mathbb{C}}, \varphi_{i}(x, y)=x$.
Let $\omega=y^{3} d y$ be a meromorphic 1-form on X_{1}. Show that there exists a meromorphic 1-form $\tilde{\omega}$ on $\hat{\mathbb{C}}$ such that $\omega=\varphi_{1}^{*} \tilde{\omega}$. Compute the divisor $\left(\varphi_{2}^{*} \tilde{\omega}\right)$ of $\varphi_{2}^{*} \tilde{\omega}$.
F.7. Show that on every Riemann surface of genus 3 there exists at least one meromorphic function of degree
(a) at most 4;
(b) at most 3 .

