Discrete Mathematics, Homework 3

Due Date: Thursday, October 28.
Problems marked (\star) are bonus ones.
3.1. What is the pattern inventory for coloring n objects using m colors if the group of symmetries is Alt_{n} ?
3.2. Use Polya's enumeration formula to determine the number of non-equivalent colorings of the faces of a cube by the colors red, green and yellow, where red is used 3 times, green is used twice, and yellow is used only once.
3.3. Determine the pattern inventory for coloring the vertices of a regular p-gon, p being prime, with m colors if the group of symmetries consists of the rotations by multiples of the angle $2 \pi / p$.
3.4. Use combinatorial arguments to determine simple formulas for $\left\{\begin{array}{l}n \\ 2\end{array}\right\}$ and $\left\{\begin{array}{c}n \\ n-2\end{array}\right\}$.
3.5. Let $r_{n, k}$ be the number of ways to divide n people into k groups, with at least two people in each group. Use a combinatorial argument to show that $r_{n, k}$ satis
es the recurrence relation $r_{n, k}=k r_{n-1, k}+(n-1) r_{n-2, k-1}$.
3.6. Define

$$
F_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
$$

where $x^{\underline{k}}=x(x-1) \ldots(x-(k-1))$. Show that
(a) $F_{n}(x)=\sum_{k=0}^{n}(-1)^{n-k}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{\bar{k}}$;
(b) $F_{n}(x)=x^{n}$;
(c) $\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}\left[\begin{array}{c}k \\ m\end{array}\right](-1)^{n-k}=1$ if $n=m$, and 0 otherwise.
3.7. Is it true that a graph having exactly two vertices of odd degree must contain a path from one to the other? Give a proof or counterexample.
3.8. Let P_{1} and P_{2} be two paths of maximum length in a connected graph G. Prove that P_{1} and P_{2} have a common vertex.
3.9. Without computing the matrix directly, find A^{4}, where A is the adjacency matrix of $K_{2,3}$.
3.10. Let A be the adjacency matrix for the graph G.
(a) Show that the (j, j) entry of A^{2} is the degree of v_{j}.
(b) Show that the number of triangles in G is the trace of A^{3} divided by 6 .
3.11. Let e be an edge of the complete graph K_{n}. Use Cayley's Theorem to prove that $K_{n} \backslash e$ has $(n-2) n^{n-3}$ spanning trees.
3.12. (\star) Use the Matrix Tree Theorem to prove Cayley's formula.
3.13. (\star) Find the number of spanning trees of the complete bipartite graph $K_{m, n}$.

