Discrete Mathematics, Homework 3

Due Date: Thursday, October 28.

Problems marked (\star) are bonus ones.

- **3.1.** What is the pattern inventory for coloring n objects using m colors if the group of symmetries is Alt_n?
- **3.2.** Use Polya's enumeration formula to determine the number of non-equivalent colorings of the faces of a cube by the colors red, green and yellow, where red is used 3 times, green is used twice, and yellow is used only once.
- **3.3.** Determine the pattern inventory for coloring the vertices of a regular *p*-gon, *p* being prime, with *m* colors if the group of symmetries consists of the rotations by multiples of the angle $2\pi/p$.
- **3.4.** Use combinatorial arguments to determine simple formulas for $\binom{n}{2}$ and $\binom{n}{n-2}$.
- **3.5.** Let $r_{n,k}$ be the number of ways to divide *n* people into *k* groups, with at least two people in each group. Use a combinatorial argument to show that $r_{n,k}$ satis

es the recurrence relation $r_{n,k} = kr_{n-1,k} + (n-1)r_{n-2,k-1}$.

3.6. Define

$$F_n(x) = \sum_{k=0}^n \left\{ {n \atop k} \right\} x^{\underline{k}},$$

where $x^{\underline{k}} = x(x-1)\dots(x-(k-1))$. Show that

(a)
$$F_n(x) = \sum_{k=0}^n (-1)^{n-k} {n \\ k} x^{\overline{k}};$$

(b) $F_n(x) = x^n;$
(c) $\sum_{k=0}^n {n \\ k} {k \\ m} (-1)^{n-k} = 1$ if $n = m$, and 0 otherwise.

- **3.7.** Is it true that a graph having exactly two vertices of odd degree must contain a path from one to the other? Give a proof or counterexample.
- **3.8.** Let P_1 and P_2 be two paths of maximum length in a connected graph G. Prove that P_1 and P_2 have a common vertex.
- **3.9.** Without computing the matrix directly, find A^4 , where A is the adjacency matrix of $K_{2,3}$.
- **3.10.** Let A be the adjacency matrix for the graph G.
 - (a) Show that the (j, j) entry of A^2 is the degree of v_j .
 - (b) Show that the number of triangles in G is the trace of A^3 divided by 6.
- **3.11.** Let e be an edge of the complete graph K_n . Use Cayley's Theorem to prove that $K_n \setminus e$ has $(n-2)n^{n-3}$ spanning trees.
- **3.12.** (\star) Use the Matrix Tree Theorem to prove Cayley's formula.
- **3.13.** (*) Find the number of spanning trees of the complete bipartite graph $K_{m,n}$.