Discrete Mathematics, Homework 4

Due Date: Thursday, November 11, in class.

Problems marked (\star) are bonus ones.
4.1. Let A be the adjacency matrix for the graph G. Show that the number of triangles in G is the trace of A^{3} divided by 6 .
4.2. A connected graph G has even/odd number of vertices, and even/odd number of edges. For every of the four possibilities either provide an example of Eulerian graph or show it does not exist.
4.3. Show that if every edge of G belongs to an odd number of cycles then G is Eulerian.
4.4. The line graph $L(G)$ of a graph G is defined as follows: the vertices of $L(G)$ are the edges of G, and two vertices are joined by an edge if and only if the corresponding edges in G share a vertex.
(a) Find $L(G)$ for $G=K_{n}, K_{2,3}$.
(b) Let G be connected and regular (i.e., degrees of all the vertices are the same). Show that $L(G)$ is Eulerian.
4.5. Show that every Hamiltonian graph is 2-connected.
4.6. Show that if G is Eulerian then $L(G)$ is Hamiltonian.
4.7. (\star) Let Z_{1} be the graph shown on Figure 1, and G be a 2-connected graph.
(a) Show that if G has no induced subgraphs isomorphic to Z_{1} and $K_{1,3}$ (i.e., G is $\left\{Z_{1}, K_{1,3}\right\}$-free) then G is Hamiltonian.
(b) Show that the condition (a) is not necessary for 2-connected Hamiltonian graphs.

Figure 1: The graph Z_{1}
4.8. Draw a planar regular graph of degree 5 .
4.9. Prove or disprove: if two planar graphs have F faces (regions), E edges and V vertices, then they are isomorphic.
4.10. Let G be a maximal planar graph of order n, i.e. G is planar, but adding any new edge leads to a nonplanar graph.
(a) Show that all the faces of G are triangles.
(b) Express the number of edges and faces of G in terms of n.
4.11. Let G be a planar connected graph on n vertices. Show that
(a) if $n<12$ then $\delta(G) \leq 4$;
(b) if $n \geq 11$ then either G or its complement is nonplanar (a complement \bar{G} of G is a graph on the same vertices as G, such that $u v$ is an edge of \bar{G} if and only if $u v$ is not an edge of G).

