Discrete Mathematics, Homework 5

Due Date: Thursday, November 25, in class.

Problems marked (\star) are bonus ones.
5.1. Prove that a graph of order at least two is bipartite if and only if it is 2-colorable.
5.2. A graph G is k-critical if $\chi(G)=k$ but $\chi(G \backslash v)<k$ for any $v \in V(G)$.
(a) Find all 1-critical and 2-critical graphs.
(b) Give an example of 3 -critical graph.
(c) Show that any k-critical graph is connected.
(d) Show that if G is k-critical, then $\delta(G) \geq k-1$.
$(e)(\star)$ Find all 3-critical graphs.
5.3. Show that if G is connected, not regular, not complete and not a cycle, then $\chi(G) \leq \Delta(G)$.
5.4. Show that if G is connected and has n vertices, then $\chi(G) \leq n+1-\alpha(G)$ (where $\alpha(G)$ is the independence number), and the bound is sharp.
5.5. Find the chromatic polynomials of the following graphs:
(a) $K_{1,5}$;
(b) C_{5};
(c) K_{4} without one edge;
(d) K_{5} without one edge.
5.6. Let G be a graph of order n, and let $c_{G}(k)$ be its chtomatic polynomial. Show that
(a) the leading coefficient of $c_{G}(k)$ is 1 ;
(b) the constant term is 0 ;
(c) the coefficients alternate in sign;
(d) the negative coefficient of the k^{n-1} term is the number of edges in G.
5.7. Show that $k^{4}-4 k^{3}+3 k^{2}$ is not a chtomatic polynomial for any graph.
5.8. Find the minimal size of maximal matching in
(a) C_{10};
(b) C_{11};
(c) C_{n}.
5.9. (\star) Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be a family of finite sets. A system of distinct representatives (SDR) for $\left\{S_{1}, \ldots, S_{k}\right\}$ is a collection of distinct elements $\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{i} \in S_{i}, 1 \leq i \leq k$.
(a) Let $S_{1}=\{1,2\}, S_{2}=\{2,5\}, S_{3}=\{2\}, S_{4}=\{1,2,5\}, S_{5}=\{2,3,5\}$. Find SDR for the collection $\left\{S_{1}, S_{2}, S_{3}, S_{5}\right\}$; show that the collection $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ has no SDR.
(b) Use Hall's Theorem to prove that $\left\{S_{1}, \ldots, S_{k}\right\}$ has SDR if and only if for any $m \in[1 . . k]$ the union af any m of these sets contain at least m elements.
Hint: create a bipartite graph with $X=\left\{S_{1}, \ldots, S_{k}\right\}$ and $Y=S_{1} \cup \cdots \cup S_{k}$.
5.10. (\star) Let G be a bipartite graph with partite sets X and Y. Denote by δ_{X} and Δ_{Y} the minimum and the maximum degrees of vertices in X and Y respectively. Show that if $\delta_{X} \geq \Delta_{Y}$, then there exists a matching of G that saturates X.
5.11. (a) Find a 2 -coloring of the edges of the graph K_{13} that proves that $R(3,5) \geq 14$. Justify your answer.
(b) Show that $R(3,5)=14$.
5.12. (\star) Prove that $R(4,4)=18$.
5.13. Find the graph Ramsey numbers $R\left(P_{3}, C_{4}\right), R\left(C_{4}, C_{4}\right)$, and $R\left(K_{1,3}, K_{1,3}\right)$.

