Discrete Mathematics, Homework 5

Due Date: Thursday, November 25, in class.

Problems marked (\star) are bonus ones.

- 5.1. Prove that a graph of order at least two is bipartite if and only if it is 2-colorable.
- **5.2.** A graph G is k-critical if $\chi(G) = k$ but $\chi(G \setminus v) < k$ for any $v \in V(G)$.
 - (a) Find all 1-critical and 2-critical graphs.
 - (b) Give an example of 3-critical graph.
 - (c) Show that any k-critical graph is connected.
 - (d) Show that if G is k-critical, then $\delta(G) \ge k 1$.
 - (e)(\star) Find all 3-critical graphs.
- **5.3.** Show that if G is connected, not regular, not complete and not a cycle, then $\chi(G) \leq \Delta(G)$.
- **5.4.** Show that if G is connected and has n vertices, then $\chi(G) \leq n + 1 \alpha(G)$ (where $\alpha(G)$ is the independence number), and the bound is sharp.
- **5.5.** Find the chromatic polynomials of the following graphs:

(a) $K_{1,5}$; (b) C_5 ; (c) K_4 without one edge; (d) K_5 without one edge.

- **5.6.** Let G be a graph of order n, and let $c_G(k)$ be its chromatic polynomial. Show that
 - (a) the leading coefficient of $c_G(k)$ is 1;
 - (b) the constant term is 0;
 - (c) the coefficients alternate in sign;
 - (d) the negative coefficient of the k^{n-1} term is the number of edges in G.
- **5.7.** Show that $k^4 4k^3 + 3k^2$ is not a chromatic polynomial for any graph.
- 5.8. Find the minimal size of maximal matching in

(a) C_{10} ; (b) C_{11} ; (c) C_n .

5.9. (*) Let $\{S_1, \ldots, S_k\}$ be a family of finite sets. A system of distinct representatives (SDR) for $\{S_1, \ldots, S_k\}$ is a collection of distinct elements $\{x_1, \ldots, x_k\}$ such that $x_i \in S_i, 1 \le i \le k$.

(a) Let $S_1 = \{1, 2\}$, $S_2 = \{2, 5\}$, $S_3 = \{2\}$, $S_4 = \{1, 2, 5\}$, $S_5 = \{2, 3, 5\}$. Find SDR for the collection $\{S_1, S_2, S_3, S_5\}$; show that the collection $\{S_1, S_2, S_3, S_4\}$ has no SDR.

(b) Use Hall's Theorem to prove that $\{S_1, \ldots, S_k\}$ has SDR if and only if for any $m \in [1..k]$ the union af any m of these sets contain at least m elements.

Hint: create a bipartite graph with $X = \{S_1, \ldots, S_k\}$ and $Y = S_1 \cup \cdots \cup S_k$.

- **5.10.** (*) Let G be a bipartite graph with partite sets X and Y. Denote by δ_X and Δ_Y the minimum and the maximum degrees of vertices in X and Y respectively. Show that if $\delta_X \ge \Delta_Y$, then there exists a matching of G that saturates X.
- **5.11.** (a) Find a 2-coloring of the edges of the graph K_{13} that proves that $R(3,5) \ge 14$. Justify your answer.

(b) Show that R(3,5) = 14.

- **5.12.** (*) Prove that R(4,4) = 18.
- **5.13.** Find the graph Ramsey numbers $R(P_3, C_4)$, $R(C_4, C_4)$, and $R(K_{1,3}, K_{1,3})$.