Discrete Mathematics, Homework 6

Due Date: Thursday, December 2, in class.

Problems marked (\star) are bonus ones.
6.1. Prove, under ZFC, that $\bigcap X$ is unique.
6.2. The infinity axiom says that there is a set Z such that
(1) $\emptyset \in Z ;(2)$ if $x \in Z$, then $\{x\} \in Z . \quad$ Let Z be such a set and T be the set of all subsets of Z that satisfy the properties (1) and (2) of the infinity axiom. Define $Z_{0}=\bigcap T$.
(a) Show formally that T and Z_{0} do exist by using the ZFC axioms.
(b) Prove that if X is any set satisfying the properties (1) and (2) of the infinity axiom then, $Z_{0} \subset X$. (In this sense, Z_{0} is a minimal infinite set.)
6.3. (a) Show that there is no X such that $|P(X)|=\aleph_{0}$.
(b) Find the cardinality of the set of bijections of \mathbb{N} onto itself.
(c) (\star) Let X, Y be sets, and $|X \cup Y|=c$, where c is cardinality of continuum. Show that either $|X|=c$ or $|Y|=c$.
6.4. An element p of a partially ordered set (poset) P is maximal if there are no elements p^{\prime} with $p<p^{\prime}$, and maximum if $p^{\prime}<p$ for any $p^{\prime} \in P$.
(a) Show that if a maximum element exists then it is unique;
(b) show that a maximum element of P is a unique maximal element;
(c) provide an example of a poset containing a unique maximal element but no maximum element.
6.5. (\star) Show that under ZF the following are equivalent:
(a) Axiom of Choice.
(b) Zorn's Lemma: Let P be a poset such that for every linearly ordered subset (chain) M in P there is an element $m \in P$ such that $x \leq m$ for any $x \in M$ (m is called an upper bound of M). Then there exists a maximal element m_{0} of P such that m_{0} is an upper bound of M.
(c) Every set can be well-ordered.

