Discrete Mathematics, Homework 6

Due Date: Thursday, December 2, in class.

Problems marked (\star) are bonus ones.

- **6.1.** Prove, under ZFC, that $\bigcap X$ is unique.
- **6.2.** The infinity axiom says that there is a set Z such that
 - (1) $\emptyset \in Z$; (2) if $x \in Z$, then $\{x\} \in Z$. Let Z be such a set and T be the set of all subsets of Z that satisfy the properties (1) and (2) of the infinity axiom. Define $Z_0 = \bigcap T$.
 - (a) Show formally that T and Z_0 do exist by using the ZFC axioms.
 - (b) Prove that if X is any set satisfying the properties (1) and (2) of the infinity axiom then, $Z_0 \subset X$. (In this sense, Z_0 is a minimal infinite set.)
- **6.3.** (a) Show that there is no X such that $|P(X)| = \aleph_0$.
 - (b) Find the cardinality of the set of bijections of \mathbb{N} onto itself.
 - (c)(\star) Let X, Y be sets, and $|X \cup Y| = c$, where c is cardinality of continuum. Show that either |X| = c or |Y| = c.
- **6.4.** An element p of a partially ordered set (poset) P is maximal if there are no elements p' with p < p', and maximum if p' < p for any $p' \in P$.
 - (a) Show that if a maximum element exists then it is unique;
 - (b) show that a maximum element of P is a unique maximal element;

(c) provide an example of a poset containing a unique maximal element but no maximum element.

- **6.5.** (\star) Show that under ZF the following are equivalent:
 - (a) Axiom of Choice.

(b) Zorn's Lemma: Let P be a poset such that for every linearly ordered subset (*chain*) M in P there is an element $m \in P$ such that $x \leq m$ for any $x \in M$ (m is called *an upper bound* of M). Then there exists a maximal element m_0 of P such that m_0 is an upper bound of M.

(c) Every set can be well-ordered.