ESM 1B, Homework 10

Due Date: 14:00 Wednesday, November 23.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
10.1. Compute divergence and curl of the following vector fields:
(a) $\vec{a}=(y z, x z, x y)$;
(b) $\vec{a}=\left(x^{2} y^{3}, 0, x z^{2}\right)$;
(c) $\vec{a}=(\sin x, x \cos y, \sin z)$.
10.2. Let f, g be scalar fields, and let \vec{u}, \vec{v} be vector fields. Prove the following formulas.
(a) $\operatorname{div}(f \vec{u})=(\operatorname{grad} f) \cdot \vec{u}+f \operatorname{div} \vec{u}$;
(b) $\operatorname{curl}(f \vec{u})=(\operatorname{grad} f) \times \vec{u}+f \operatorname{curl} \vec{u}$;
(c) $\operatorname{div}(\vec{u} \times \vec{v})=\vec{v} \cdot(\operatorname{curl} \vec{u})-\vec{u} \cdot(\operatorname{curl} \vec{v})$;
(d) $\operatorname{div}(\operatorname{grad} f \times \operatorname{grad} g)=0$.
10.3. Find a function f and vector field \vec{a} (or prove that it does not exist) such that
(a) grad $\vec{f}=(y \cos x, x \cos y, x y z)$;
(b) curl $\vec{a}=(x y,-y z, x y)$.
10.4. Compute components of curl \vec{a} in cylindrical coordinates, where $\vec{a}=\left(a_{\rho}, a_{\varphi}, a_{z}\right)$.
10.5. Let $(\rho, \vartheta, \varphi)$ be spherical coordinates:

$$
x=\rho \sin \vartheta \cos \varphi, \quad y=\rho \sin \vartheta \sin \varphi, \quad z=\rho \cos \vartheta
$$

Let $\vec{e}_{\rho}, \vec{e}_{\vartheta}$ and \vec{e}_{φ} be the unit vectors of the same direction as the partial derivatives

$$
\frac{\partial \vec{r}}{\partial \rho}, \quad \frac{\partial \vec{r}}{\partial \vartheta}, \quad \frac{\partial \vec{r}}{\partial \varphi}
$$

Prove that the gradient of a scalar field f has the following expression in the spherical coordinates:

$$
\nabla f=\frac{\partial f}{\partial \rho} \vec{e}_{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \vartheta} \vec{e}_{\vartheta}+\frac{1}{\rho \sin \vartheta} \frac{\partial f}{\partial \varphi} \vec{e}_{\varphi}
$$

You may use the textbook but please give a detailed and complete computation.
10.6. (\star) Let $f=1 / r$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Write down the expression for vector field $\vec{u}=\operatorname{grad} f$
(a) in Cartesian coordinates;
(b) in cylindrical coordinates;
(c) in spherical coordinates.
(d) Compute div \vec{u} and curl \vec{u}.

