ESM 1B, Homework 11

Due Date: 14:00 Wednesday, November 30.
$\underline{\text { Explain your answers! Problems marked }(\star) \text { are bonus ones. }}$
11.1. Find the area of the plane region bounded by the closed curve

$$
x=\sin ^{3} \varphi, \quad y=\cos \varphi
$$

Here φ is a parameter that ranges from 0 to 2π.
11.2. Let P be the rectangular parallelepiped in \mathbb{R}^{3} given by the following inequalities:

$$
0 \leq x \leq a, \quad 0 \leq y \leq b, \quad 0 \leq z \leq c
$$

Evaluate the integrals

$$
\iiint_{P} \operatorname{div}(\vec{u}) d V, \quad \iint_{\partial P} \vec{u} \cdot d \vec{S}
$$

where $\vec{u}(x, y, z)=(x, y, z)$, by direct computation. Verify the Gauss theorem for the given P and \vec{u}.
11.3. Evaluate the following integrals over the sphere $x^{2}+y^{2}+z^{2}=1$:
(a) $\iint_{S}\left(x^{3}, y, z\right) \cdot d \vec{S}$;
(b) $\iint_{S}\left(e^{x y z} y,-e^{x y z} x, 0\right) \cdot d \vec{S}$.
11.4. (\star) Let U be a region in \mathbb{R}^{3} with a smooth boundary. We say that U is simply connected if for every non-self-intersecting loop (i.e. closed curve) γ in U there is a surface S in U such that $\gamma=\partial S$. Give a geometric argument that shows that for every smooth vector field \vec{v} on a simply connected region U such that $\nabla \times \vec{v}=\overrightarrow{0}$, there exists a function φ on U such that $\vec{v}=\nabla \varphi$. The function φ is called the potential of \vec{v} on U.
Hint: choose a base point $x_{0} \in U$ and define

$$
\varphi(x)=\int_{\gamma} \vec{u} \cdot d \vec{r}
$$

for every point $x \in U$, where γ is some curve connecting x_{0} to x. Use Stokes' theorem to show that φ is well-defined.

