ESM 1B, Homework 11

Due Date: 14:00 Wednesday, November 30.

Explain your answers! Problems marked (\star) are bonus ones.

11.1. Find the area of the plane region bounded by the closed curve

$$x = \sin^3 \varphi, \quad y = \cos \varphi.$$

Here φ is a parameter that ranges from 0 to 2π .

11.2. Let P be the rectangular parallelepiped in \mathbb{R}^3 given by the following inequalities:

$$0 \le x \le a$$
, $0 \le y \le b$, $0 \le z \le c$.

Evaluate the integrals

$$\iiint_{P} \operatorname{div}\left(\vec{u}\right) dV, \quad \iint_{\partial P} \vec{u} \cdot d\vec{S},$$

where $\vec{u}(x,y,z)=(x,y,z)$, by direct computation. Verify the Gauss theorem for the given P and \vec{u} .

11.3. Evaluate the following integrals over the sphere $x^2 + y^2 + z^2 = 1$:

(a)
$$\iint_S (x^3, y, z) \cdot d\vec{S}$$
; (b) $\iint_S (e^{xyz}y, -e^{xyz}x, 0) \cdot d\vec{S}$.

11.4. (*) Let U be a region in \mathbb{R}^3 with a smooth boundary. We say that U is simply connected if for every non-self-intersecting loop (i.e. closed curve) γ in U there is a surface S in U such that $\gamma = \partial S$. Give a geometric argument that shows that for every smooth vector field \vec{v} on a simply connected region U such that $\nabla \times \vec{v} = \vec{0}$, there exists a function φ on U such that $\vec{v} = \nabla \varphi$. The function φ is called the *potential* of \vec{v} on U.

Hint: choose a base point $x_0 \in U$ and define

$$\varphi(x) = \int_{\gamma} \vec{u} \cdot d\vec{r}$$

for every point $x \in U$, where γ is some curve connecting x_0 to x. Use Stokes' theorem to show that φ is well-defined.