## ESM 1B, Homework 12

## Due Date: 14:00 Wednesday, December 7.

$\underline{\text { Explain your answers! Problems marked ( } \star \text { ) are bonus ones. }}$
12.1. Solve (find general solutions of) the following differential equations by separation of variables:
(a) $x^{2} y^{2} \frac{d y}{d x}+1=y$;
(b) $\sqrt{y^{2}+1} d x=x y d y$.
12.2. Solve the following exact equations:
(a) $2 x y d x+\left(x^{2}-y^{2}\right) d y=0$;
(b) $e^{-y} d x-\left(2 y+x e^{-y}\right) d y=0$.
12.3. Solve the following equations by finding an integrating factor:
(a) $y^{2} d x-\left(x y+x^{3}\right) d y=0 ;$
(b) $\left(y-\frac{1}{x}\right) d x+\frac{d y}{y}=0$.
12.4. Solve the following homogeneous equations:
(a) $x^{2} \frac{d y}{d x}=y(x+y) ;$
(b) $\left(x \sec \frac{y}{x}+y\right) d x-x d y=0$.
12.5. Solve the following equation:
$2 x y^{3} \frac{d y}{d x}+y^{4}=1, \quad y(1)=0$.
12.6. ( $\star$ ) Newton's law of cooling can be written in the form

$$
\frac{d T(t)}{d t}=-k\left(T(t)-T_{0}\right)
$$

where $t$ is time, $T=T(t)$ is the temperature of an object, $T_{0}<T$ is the temperature of the outside medium, and $k$ is a positive constant. Using Newton's law of cooling, determine how long it takes for a cup of tee at the initial temperature of $90^{\circ}$ to cool down to $40^{\circ}$. The outside temperature is $20^{\circ}$. Express the answer through $k$. Give a rough estimate for $k$ based on your experience.

