ESM 1B, Homework 2

Due Date: 14:00 Wednesday, September 21.

Explain your answers! Problems marked (\star) are bonus ones.
2.1. Let P be a parallelepiped. Consider the three vectors connecting a vertex of P to the centers of the three faces meeting at this vertex. Define a new parallelepiped P^{\prime} as the parallelepiped spanned by these three vectors. Assuming that the volume of P is known, find the volume of P^{\prime}.
2.2. Find the parameter, vector and coordinate equations of the line containing points $(1,-1,1)$ and $(2,3,6)$.
2.3. Find the parameter, vector and coordinate equations of the plane containing points $(1,0,1)$, $(0,-1,0)$ and $(-1,1,1)$.
2.4. Let Π_{1} be the plane containing points $A=(-3,2,0), B=(7,2,0)$ and $C=(2,3,2)$. Plane Π_{2} passes through A and is orthogonal to the line $B C$, whilst plane Π_{3} passes through B and is orthogonal to the line $A C$. Find the coordinates of the point, where the three planes intersect.
2.5. Which of the following equations define a sphere?

$$
(x-1)^{2}+(y+3)^{2}+z^{2}+x-23=0
$$

2)

$$
x^{2}+y^{2}+3 z-5=0 ;
$$

3)

$$
(x+1)^{2}+y^{2}+(z-2)^{2}+4 y+5=0 .
$$

Explain your answer.
2.6. Find the distance from point $A=(-1,1,0)$ to the plane containing points

$$
B=(0,0,0), \quad C=(0,1,2), \quad D=(1,0,-1)
$$

Also, find the distance from B to the line $C D$, and the distance between lines $A B$ and $C D$.
2.7. (\star) Find the distance between opposite edges of a regular tetrahedron with edge of length 1 .

