ESM 1B, Homework 3

Due Date: 14:00 Wednesday, September 28.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
3.1. Find all first-order partial derivatives of the following functions:
(a) $f(x, y)=x-y+\cos (x y)$;
(b) $f(x, y, z)=\cot ^{-1}(y z / x)$.

For the function in (a), find all second-order partial derivatives.
Verify by explicit computation that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ in this example.
3.2. Suppose that a function $f(x, y)$ satisfies the following equation:

$$
\frac{\partial^{2} f}{\partial x \partial y}=0
$$

Prove that $f(x, y)=g(x)+h(y)$, where g and h are functions of one variable.
3.3. For the following differentials, determine whether they are exact:
(a) $x d x-y d y$;
(b) $x d y+y d x$;
(c) $x d y-y d x$;
(d) $(y \sin (x y)+1) d x+x \sin (x y) d y$.

For the exact differentials, find the corresponding potentials.
3.4. Compute the total differential of the function

$$
f(x, y, z)=\cos \left(z+e^{x y}\right)
$$

3.5. (a) Compute directional derivative of the function

$$
f(x, y)=y e^{x / y}
$$

at the point $(1,1)$ along the vector $(1,-1)$.
(b) Compute directional derivative of the function

$$
f(x, y, z)=x^{2} y z-\cos x y z
$$

at the point $(1,1,0)$ along the vector $(1,2,-1)$.
$(c)(\star)$ Consider the function

$$
f(x, y)=g(x+\sin y)+h(\cos (x y))
$$

Find the directional derivative of f at the point $(\pi, \pi / 2)$ along the vector $(1,1)$ in terms of the derivatives of g and h.
3.6. Give an example of a function $f(x, y)$, whose directional derivative $f_{\vec{v}}$ at $(0,0)$ along $\vec{v}=(2,1)$ is 1 and whose directional derivative $f_{\vec{u}}$ at the same point along $\vec{u}=(1,-2)$ is -1 .

