ESM 1B, Homework 4

Due Date: 14:00 Wednesday, October 5.

Explain your answers! Problems marked (\star) are bonus ones.
4.1. Cylindrical coordinates (ρ, ϑ, ζ) are defined by the following formulas:

$$
x=\rho \cos \vartheta, \quad y=\rho \sin \vartheta, \quad z=\zeta
$$

where (x, y, z) are the Cartesian coordinates. Suppose that $f(x, y, z)$ is a function, whose partial derivatives with respect to the Cartesian coordinates are known. Write a formula for the partial derivatives of f with respect to the cylindrical coordinates.
4.2. The equation

$$
3 y=z^{3}+3 x z
$$

defines z as an implicit function of x and y. Evaluate all the three second order partial derivatives of z with respect to x and y.
Verify that z is a solution of equation

$$
x \frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial^{2} z}{\partial x^{2}}=0
$$

4.3. Using the chain rule, transform the equation

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{\partial^{2} \varphi}{\partial y^{2}}
$$

to new coordinates $s=\frac{1}{2}(x+y), t=\frac{1}{2}(x-y)$. Show that φ has the form

$$
f(x+y)+g(x-y)
$$

for some functions f and g of one variable.
4.4. Suppose that a function f satisfies the equation

$$
y f_{x}+x f_{y}=0
$$

Transform this equation to new coordinates $s=x^{2}-y^{2}, t=2 x y$ to show that f is a function of $x^{2}-y^{2}$ only.
4.5. Find the second-order approximation of the following function at $(2,1)$:

$$
f(x, y)=\exp \left(x^{2}+y^{2}\right)
$$

4.6. Find all stationary points of the function

$$
f(x, y)=x^{3}+2 x^{2}-x-y^{3}+3 y^{2}+3 y+6
$$

Determine the nature of the stationary points (maxima, minima, saddle points or none of these).
4.7. Give an example of a function on \mathbb{R}^{2} having
(a) a local minimum at $(0,0)$ and a local maximum at $(1,0)$;
$(\mathrm{b})(\star)$ a local maximum at $(0,0)$ and local minima at $(1,0),(0,1),(-1,0),(0,-1)$;
$(\mathrm{c})(\star)$ saddle points at $(0,0),(1,1),(-1,-1),(-1,1)$, and $(1,-1)$.

