ESM 1B, Homework 5

Due Date: 14:00 Wednesday, October 12.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
5.1. Find the local maxima, minima, and saddle points of the functions below:
(a) $f(x, y)=x^{4}+y^{4}-4 x y+2$;
(b) $f(x, y)=e^{y}\left(y^{2}-x^{2}\right)$.
5.2. Consider the point $p=(1,2,1)$ and the plane Π given by the equation $x+y-z=1$.
(a) Express the distance of a point on the plane from p as a function of two variables.
(b) Find the point on the plane that is closest (i.e. minimizes the distance) to p and compute this minimum. Compare the result with the distance from p to Π.
5.3. A rectangular box without a lid is to be made to have volume $1 \mathrm{~m}^{3}$. Find the minimum surface area of this box.
5.4. Find all stationary points of the function

$$
f(x, y)=x^{3}-6 x^{2}+9 x-y^{3}+3 y+4
$$

Determine the nature of the stationary points.

