ESM 1B, Homework 6

Due Date: 14:00 Wednesday, October 19.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
6.1. The temperature of a point (x, y, z) on the unit sphere $x^{2}+y^{2}+z^{2}=1$ is given by

$$
T(x, y, z)=1+x y-y z
$$

Find the temperature of the hottest and the coldest points on the sphere.
6.2. Find the stationary points of $f(x, y, z)=x^{3}+y^{3}+z^{3}$ subject to the following constraints

$$
x^{2}+y^{2}+z^{2}=1, \quad x+y+z=1
$$

6.3. Find the maximum and minimum values of $f(x, y)=x^{2}+2 y^{2}+3 z^{2}$ on the intersection of planes

$$
x+y+z=1 \quad \text { and } \quad x-y+2 z=2
$$

6.4. (\star) Let $f(x, y)=x^{2}-y$, and define $F(x, y)$ as

$$
F(x, y)= \begin{cases}x^{2}-y+e^{-1 / x^{2}} \sin \frac{1}{x}, & x \neq 0 \\ x^{2}-y, & x=0\end{cases}
$$

Find extrema of $f(x, y)$ under constraints $F(x, y)=0$.

