Jacobs University School of Engineering and Science

ESM 1B, Homework 6

Due Date: 14:00 Wednesday, October 19.

Explain your answers! Problems marked (\star) are bonus ones.

6.1. The temperature of a point (x, y, z) on the unit sphere $x^2 + y^2 + z^2 = 1$ is given by

$$T(x, y, z) = 1 + xy - yz.$$

Find the temperature of the hottest and the coldest points on the sphere.

6.2. Find the stationary points of $f(x, y, z) = x^3 + y^3 + z^3$ subject to the following constraints

$$x^{2} + y^{2} + z^{2} = 1$$
, $x + y + z = 1$.

6.3. Find the maximum and minimum values of $f(x, y) = x^2 + 2y^2 + 3z^2$ on the intersection of planes

$$x + y + z = 1$$
 and $x - y + 2z = 2$

6.4. (\star) Let $f(x, y) = x^2 - y$, and define F(x, y) as

$$F(x,y) = \begin{cases} x^2 - y + e^{-1/x^2} \sin \frac{1}{x}, & x \neq 0, \\ x^2 - y, & x = 0 \end{cases}$$

Find extrema of f(x, y) under constraints F(x, y) = 0.