ESM 1B, Homework 9

Due Date: 14:00 Wednesday, November 9.
$\underline{\text { Explain your answers! Problems marked (} \star \text {) are bonus ones. }}$
9.1. Parametrize the curve $x^{4}=y^{3}$. Find the normal and tangent components of acceleration with respect to the chosen parameter. Find the curvature of this curve as a function of (x, y).
9.2. (a) Find the arc-length parameter on the parabola $x^{2}=y$, setting the initial point (i.e. where $s=0$) to be $(0,0)$.
(b) Compute the length of the curve $y=x^{3},-1 \leq x \leq 1$.
9.3. Give a coordinate equation of the tangent plane to the surface

$$
x=\sin u, \quad y=\cos v, \quad z=u+v
$$

at point $\left(u_{0}, v_{0}\right)$.
9.4. Let $\vec{a}(t)=(\cos \pi t, \sin \pi t, 2 t)$, and $\vec{b}(t)=(t, 2 t, 3 t+1)$. Evaluate the integral

$$
\int_{0}^{1}\left[\vec{a}\left(\frac{d \vec{a}}{d t} \cdot \vec{b}+\vec{a} \cdot \frac{d \vec{b}}{d t}\right)+\frac{d \vec{a}}{d t}(\vec{a} \cdot \vec{b})\right] d t
$$

9.5. (a) Write an equation of the tangent line to the curve $x=y$ on the surface $x^{2}-y^{2}+z=2$ at the point $(1,1,2)$;
(b) Write the coordinate equation of the plane tangent to the surface

$$
x y+\cos z=0
$$

at the point $(1 / 2,-\sqrt{3}, \pi / 6)$.
(c) Write the coordinate equation of the plane tangent to the surface

$$
\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{c}
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)$ of the surface.
9.6. (a) Compute the surface area of the paraboloid $z=x^{2}+y^{2}, 0 \leq z \leq 1$;
(\star) Compute the area of the part of the surface $x^{2}+y^{2}=R x$ contained inside the sphere $x^{2}+y^{2}+z^{2}=$ R^{2}.

