Jacobs University School of Engineering and Science

ESM 1B, Homework 9

Due Date: 14:00 Wednesday, November 9.

Explain your answers! Problems marked (\star) are bonus ones.

- **9.1.** Parametrize the curve $x^4 = y^3$. Find the normal and tangent components of acceleration with respect to the chosen parameter. Find the curvature of this curve as a function of (x, y).
- **9.2.** (a) Find the arc-length parameter on the parabola $x^2 = y$, setting the initial point (i.e. where s = 0) to be (0, 0).
 - (b) Compute the length of the curve $y = x^3$, $-1 \le x \le 1$.
- 9.3. Give a coordinate equation of the tangent plane to the surface

$$x = \sin u, \quad y = \cos v, \quad z = u + v$$

at point (u_0, v_0) .

9.4. Let $\vec{a}(t) = (\cos \pi t, \sin \pi t, 2t)$, and $\vec{b}(t) = (t, 2t, 3t + 1)$. Evaluate the integral

$$\int_0^1 \left[\vec{a} \left(\frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt} \right) + \frac{d\vec{a}}{dt} (\vec{a} \cdot \vec{b}) \right] dt$$

- **9.5.** (a) Write an equation of the tangent line to the curve x = y on the surface $x^2 y^2 + z = 2$ at the point (1, 1, 2);
 - (b) Write the coordinate equation of the plane tangent to the surface

$$xy + \cos z = 0$$

at the point $(1/2, -\sqrt{3}, \pi/6)$.

(c) Write the coordinate equation of the plane tangent to the surface

$$\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{c}$$

at the point (x_0, y_0, z_0) of the surface.

9.6. (a) Compute the surface area of the paraboloid z = x² + y², 0 ≤ z ≤ 1;
(*) Compute the area of the part of the surface x²+y² = Rx contained inside the sphere x²+y²+z² = R².