Jacobs University School of Engineering and Science

Fall Term 2011

ESM 1B, Homework 1

Due Date: 14:00 Wednesday, September 14.

Explain your answers! Problems marked (\star) are bonus ones.

- **1.1.** For vectors $\vec{a} = (0, 2, 1)$ and $\vec{b} = (1, -1, 0)$, find $\vec{a} + \vec{b}$, $\vec{b} 2\vec{a}$, $\vec{a} \cdot \vec{b}$, $\vec{a} \times \vec{b}$, $|\vec{a}|$, $|\vec{b}|$, the cosine of the angle between \vec{a} and \vec{b} , the area of the parallelogram spanned by \vec{a} and \vec{b} .
- **1.2.** Suppose \vec{u} , \vec{v} , \vec{w} are three vectors with the property that \vec{u} is orthogonal to $\vec{v} \vec{w}$, \vec{v} is orthogonal to $\vec{u} \vec{w}$. Show that \vec{w} is orthogonal to $\vec{v} \vec{u}$.
- **1.3.** Prove the bac-cab formula

$$\vec{a} \times (\vec{b} \times c) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}).$$

Hint: choose appropriate coordinate system.

1.4. Give an example showing that the cross-product is not associative:

$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}.$$

1.5. (*) Using vector methods, prove that the segments connecting midpoints of opposite edges in a tetrahedron intersect at one point, and that this point bisects each of these segments.

Hint: compute position vectors of midpoints of these segments and show that these vectors coincide.