ESM 1B, Practice list

P.1. (Cosine theorem) Using dot products, prove that for any triangle $A B C$,

$$
|B C|^{2}=|A B|^{2}+|A C|^{2}-2|A B| \cdot|A C| \cos (\angle B A C) \text {. }
$$

P.2. Find the distance between lines $A B$ and $C D$, where

$$
A=(0,1,2), \quad B=(3,4,5), \quad C=(1,0,1), \quad D=(0,2,0) .
$$

P.3. Find the distance between lines given in parametric form by the following equations:

$$
\vec{r}=\vec{a}+\lambda \vec{b}, \quad \vec{r}=\vec{c}+\lambda \vec{d}
$$

where

$$
\vec{a}=(0,0,0), \quad \vec{b}=(1,1,1), \quad \vec{c}=(1,0,0), \quad \vec{d}=(1,2,3)
$$

and λ is a parameter.
P.4. Find the equation of a plane parallel to lines $x=y=2$ and $y=z=3$ and containing the point $(4,5,6)$.
P.5. Consider two planes given by the following parameter equations:

$$
\vec{r}=\vec{a}+\lambda \vec{b}+\mu \vec{c}, \quad \vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}+\mu \vec{c}_{1},
$$

where

$$
\begin{aligned}
\vec{a}=(0,0,0), & \vec{b}=(1,0,1), \\
\vec{a}_{1}=(1,0,0), & \vec{b}=(0,-1,0), \\
\vec{b}_{1}=(0,0,1), & \vec{c}_{1}=(1,1,1),
\end{aligned}
$$

and λ, μ are parameters. Find coordinate equations of the line, at which these two planes intersect.
P.6. Consider two planes given by the following coordinate equations:

$$
x+y+2 z=3, \quad-x+3 y-z=5 .
$$

Find any nonzero vector parallel to the line of intersection of these two planes.
P.7. Give a coordinate equation of a plane parallel to the plane

$$
x+y+z=0
$$

and such that the distance between the two planes is 1 .
P.8. Find the area of the triangle with vertices $(1,0,1),(0,1,0)$ and $(0,0,1)$.
P.9. Consider two spheres given by the following equations

$$
x^{2}+y^{2}+z^{2}+x+2 y=5, \quad x^{2}+y^{2}+z^{2}-x-y-z=1 .
$$

Find a coordinate equation of the plane containing the intersection of these two spheres.
P.10. Find the distance from the point $(0,1,1)$ to the plane given by the equation

$$
x-y+z=3 .
$$

P.11. Express the derivative of the function

$$
f(t)=g\left(e^{t}, \sin t\right)
$$

through the partial derivatives $\partial g / \partial x$ and $\partial g / \partial y$ of the function g.
P.12. Write the function $f(x, y)=x+y$ in polar coordinates. Compute the partial derivatives of this function with respect to the polar coordinates.
P.13. Determine whether there is a function $f(x, y)$ satisfying the following equation:

$$
d f=\sin y d x+\cos x d y .
$$

P.14. Give an example of a function $f(x, y)$, whose directional derivative at $(0,0)$ along $(1,1)$ is 1 and whose directional derivative at the same point along $(1,-1)$ is -2 .
P.15. Find all local minima of the function

$$
f(x, y)=x^{2}+y^{2}+2 x+3 y
$$

P.16. Evaluate the directional derivative of the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ at point $(0,0)$ in the direction $(1,1)$.
P.17. Write the second order approximation of the following function at the point $(1,2)$:

$$
f(x, y)=\sin (x+y) e^{x-y} .
$$

P.18. How many points of local minima has the function $f(x, y)=\sin ^{2}(x)+\sin ^{2}(y)$ in the rectangle $-5 \leq x \leq 5,-5 \leq y \leq 5 ?$
P.19. Find the total differential of the function $f(x, y, z)=g(x)+g(y)+g(z)$, where g is a function of one variable. Express the answer through the derivative g^{\prime} of the function g.
P.20. Compute the total differential of the following function:

$$
f(x, y, z)=\sin \left(x+e^{y z}\right) .
$$

P.21. Compute partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following function:

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} .
$$

P.22. Suppose that $w=g(x / y, z / y)$ is a differentiable function of x / y and z / y. Show then that

$$
x \partial w x+y \partial w y+z \partial w z=0 .
$$

P.23. Consider the differential

$$
\omega=y\left(1+x-x^{2}\right) d x+x(x+1) d y .
$$

Find a function $g(x)$ such that $g(x) \omega$ is an exact differential.
P.24. Transform the equation

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{\partial^{2} \varphi}{\partial y^{2}}
$$

to new coordinates $s=\frac{1}{2}(x+y), t=\frac{1}{2}(x-y)$. Show that φ has the form

$$
f(x+y)+g(x-y)
$$

for some functions f and g of one variable.
P.25. Find the second-order approximation of the following function at $(1,2)$:

$$
f(x, y)=\exp \left(x^{2}+y^{2}\right)
$$

P.26. Find all maxima, minima and saddle points of the function

$$
f(x, y)=x y\left(x^{2}+y^{2}-1\right) .
$$

P.27. Can the following vector fields be represented as gradients of scalar fields:
(a) $\vec{A}=\left(y^{2}, x^{2}, z^{2}\right)$;
(b) $\vec{A}=(-y, x, 0)$;
(c) $\vec{A}=(y, x, z)$;
(d) $\vec{A}=(y z \cos (x y), x z \cos (x y), \sin (x y))$?

If no, explain. If yes, find the corresponding scalar fields.
P.28. Find the tangent plane to the surface

$$
x=f(u+v), y=g(u-v), z=u
$$

at point with coordinates $u=u_{0}, v=v_{0}$. Here f and g are some functions of one variable.
P.29. Find the tangent plane to the surface

$$
f(x y)+g(y+z)=1
$$

at point $(1,1,1)$.
P.30. Parametrize the surface of the ellipsoid:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

near the point $(a, 0,0)$. Find the area form $d A$ with respect to this parametrization.
P.31. Parametrize the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

Write the length of the ellipse as a definite integral.
P.32. Let $\vec{r}(s)$ be a plane curve parametrized by the arc-length parameter. Denote by $\vec{v}(s)$ the velocity vector $\frac{d \vec{r}(s)}{d s}$, and by $\vec{n}(s)$ the unit vector

$$
\frac{1}{\kappa(s)} \frac{d^{2} \vec{r}(s)}{d s^{2}},
$$

where $\kappa(s)$ is the curvature at point $\vec{r}(s)$. Show that

$$
\frac{d \vec{n}(s)}{d s}=-\kappa(s) \vec{v}(s) .
$$

P.33. Evaluate the integral

$$
\iiint_{C}\left(x^{2}+y^{2}+\sin z\right) d x d y d z
$$

where C is the cylinder

$$
x^{2}+y^{2} \leq 1, \quad-\pi \leq z \leq \pi
$$

P.34. Reduce the triple integral

$$
\iiint_{D} f\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

to a definite one-variable integral. Here D is the region given by the inequalities

$$
1 \leq x^{2}+y^{2}+z^{2} \leq 2
$$

and f is a function of one variable.
P.35. Find the surface area of the cylinder

$$
x^{2}+y^{2} \leq a, \quad 0 \leq z \leq b
$$

P.36. Find the volume of the region

$$
0 \leq x \leq 1, \quad 0 \leq y \leq x, \quad z \leq e^{x+y}
$$

P.37. Express the area of the surface

$$
0 \leq x, y, \leq 1, \quad z=f(x, y)
$$

as a double integral.
P.38. Find the tangent line to the curve

$$
x=\cos (t), \quad y=\sin (2 t)
$$

at point $t=\pi / 4$.
P.39. Parametrize the hyperbola $x y=1$. Find the curvature as a function of the parameter.
P.40. Write an equation of the tangent line to the curve

$$
x^{3}+y^{3}=1
$$

at point $\left(x_{0}, y_{0}\right)$ of the curve.
P.41. Find the volume of the following region:

$$
x^{2}+y^{2} \leq f(z)
$$

Give the answer in terms of definite one-variable integral(s) involving the function f.
$\mathbf{P} .42$. Find the surface area of the following region:

$$
x^{2}+y^{2} \leq f(z) .
$$

Give the answer in terms of definite one-variable integral(s) involving the function f.
P.43. Evaluate the integral

$$
\iint_{S} \vec{A} \cdot d \vec{S}
$$

where S is the surface of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,
$$

and \vec{A} is the vector field $\left(x^{2}, y,-z\right)$.
P.44. Evaluate the following integrals over the sphere $x^{2}+y^{2}+z^{2}=1$:

$$
\iint_{S}(x \sin x, y \sin x, z \sin x) \cdot d \vec{S}
$$

P.45. Evaluate the integral

$$
\iint_{x^{2}+y^{4}+z^{6}=1}\left(-2 y^{3},-3 z^{5}+z, 2 y^{3}\right) \cdot d \vec{S} .
$$

P.46. Consider the curve given by the following parametric equations:

$$
x=\cos t, \quad y=\sin t, \quad z=\sin 2 t, \quad 0 \leq t \leq 2 \pi
$$

Evaluate the integral

$$
\int_{C} \vec{A} \cdot d \vec{r},
$$

where $\vec{A}=\left(y z e^{x y}, x z e^{x y}, e^{x y}\right)$ or $\vec{A}=(y z \cos (x y z)+x, x z \cos (x y z)+y, x y \cos (x y z)+z)$.
P.47. Evaluate the following integral

$$
\int_{C}\left(x y^{2}+5 x^{2}, y^{3}+5 x y^{2}+7 x\right) \cdot d \vec{r}
$$

where C is the unit circle $x^{2}+y^{2}=1$.
P.48. Consider the vector field

$$
\vec{Q}=\left(3 x^{2}(y+z)+y^{3}+z^{3}, 3 y^{2}(z+x)+z^{3}+x^{3}, 3 z^{2}(x+y)+x^{3}+y^{3}\right) .
$$

Show that the integral $\int_{L} \vec{Q} \cdot d \vec{r}$ along a curve L connecting the points $(1,-1,1)$ and $(2,1,2)$ does not depend on a particular choice of L. Compute this integral.
P.49. Find the area bounded by the following curves:

$$
x^{2 / 5}+y^{2 / 5}=a^{2 / 5}, \quad x^{2 / 3}+y^{2 / 3}=a^{2 / 3} .
$$

Here a is a constant.
P.50. Evaluate the integral

$$
\int_{C}\left[y\left(4 x^{2}+y^{2}\right) d x+x\left(2 x^{2}+3 y^{2}\right) d y\right]
$$

around the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
P.51. Consider the curve on the unit sphere $x^{2}+y^{2}+z^{2}=1$ given in spherical coordinates (φ, ξ) by the equation $\xi=1+\cos ^{2} \varphi$. Evaluate the integral

$$
\oint_{C}\left(z^{2} / 2,-y(x+z), x^{2} / 2\right) \cdot d \vec{r}
$$

over this curve.
P.52. An electric circuit contains a resistance R, a capacitor C and a battery supplying a time-varying electromotive force $V(t)$. The charge q on the capacitor therefore obeys the equation

$$
R \frac{d q}{d t}+\frac{q}{C}=V(t)
$$

Assuming that initially there is no charge on the capacitor, and given that $V(t)=V_{0} \sin \omega t$, find the charge on the capacitor as a function of time.
P.53. Solve the following differential equations:
(a) $(y-x) y^{\prime}+2 x+3 y=0$;
(b) $x y^{\prime}+(x-1) y+x^{2}=0$;
(c) $2 x y^{\prime}+y^{2}=1$;
(d) $y-y^{\prime}=y^{2}+x y^{\prime}$;
(e) $x^{2} y^{\prime}=y(x+y)$;
(f) $y^{\prime 3}-y^{\prime} e^{2 x}=0$;
(g) $\left(1-x^{2}\right) d y+x y d x=0$;
(h) $y^{\prime 2}+2(x-1) y^{\prime}-2 y=0 ;$
(i) $x^{2} y^{\prime}-2 x y=3 y$.
P.54. Find integrating factors for the following equations:
(a) $y^{\prime}=\frac{1}{x-y^{2}}$;
(b) $d y\left(x-\frac{2}{y}\right)-y d x=0$;
(c) $\left(1-x^{2}\right) y^{\prime}+2 x y=\left(1-x^{2}\right)^{3 / 2}$;
(d) $y^{\prime}-y \frac{\cos x}{\sin x}+\frac{1}{\sin x}=0$;
(e) $\left(x+y^{3}\right) y^{\prime}=y$.
P.55. Find a plane curve, whose family of tangent lines is $y=2 a x+a^{3}$, where a is a real parameter.
P.56. Using the substitutions $u=x^{2}, v=y^{2}$, reduce the equation

$$
x y y^{\prime 2}-\left(x^{2}+y^{2}-1\right) y^{\prime}+x y=0
$$

to Clairaut's form. Find the integral curves.
P.57. Solve the following initial value problems:
(a) $y^{\prime}-(y / x)=1, \quad y(1)=-1$;
(b) $y^{\prime}-y \tan x=1, \quad y(\pi / 4)=3$.
P.58. Find general solutions to the following second-order linear ODEs:
(a) $y^{\prime \prime}-5 y^{\prime}+6 y=\sin x$;
(b) $y^{\prime \prime}+2 y^{\prime}+6=e^{2 x}$;
(c) $y^{\prime \prime}-2 y^{\prime}+y=e^{2 x}$;
(d) $y^{\prime \prime}+y=\cos x$;
P.59. A simple harmonic oscillator of mass m and natural frequency ω_{0} experiences an oscillating driving force $f(t)=m a \cos \omega t$. The equation of motion is

$$
\ddot{x}+\omega_{0}^{2} x=a \cos \omega t .
$$

Here x is the position. Given that $x=\dot{x}=0$ at $t=0$, find x as a function of t.
P.60. Solve the following initial value problems:
(a) $y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0$;
(b) $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \cos 3 x, \quad y(0)=0, \quad y^{\prime}(0)=0$.
P.61. A solution of the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=4 e^{-x}
$$

takes the value 1 when $x=0$ and e^{-1} when $x=1$. What is its value when $x=2$?
P.62. Two functions $x(t)$ and $y(t)$ satisfy the following system of ODEs:

$$
\frac{d x}{d t}-2 y=-\sin t, \quad \frac{d y}{d t}+2 x=5 \cos t .
$$

Find $x(t)$ and $y(t)$ assuming that $x(0)=3$ and $y(0)=2$.
P.63. Find general solutions of the following differential equations:
(a) $y^{\prime \prime}-y=x^{n}$;
(b) $y^{\prime \prime}-2 y^{\prime}+y=2 x e^{x}$.
P.64. Find an explicit expression for a sequence u_{n} satisfying

$$
u_{n+1}+5 u_{n}+6 u_{n-1}=2^{n}, \quad u_{0}=u_{1}=1 .
$$

