Jacobs University School of Engineering and Science

Introductory Complex Analysis, Homework 1

Due Date: Friday, September 16, in class.

Problems marked (\star) are bonus ones.

- **1.1.** Denote by i_C the inversion in circle C. Show that i_C takes lines and circles to lines and circles.
- **1.2.** Let C be the circle |z| = 1. Draw the image $i_C(P)$, where P is
 - (a) the line $\operatorname{Re} z = \frac{1}{2}$;
 - (b) the square with vertices (-1, 1), (1, -1), (-1, -3), (-3, -1);
 - (c) the upper half-plane $\operatorname{Im} z > 0$.
- 1.3. Show that

(a) for any pair of non-intersecting circles C_1 and C_2 there exists a circle C such that i_C takes C_1 and C_2 to concentric circles;

(b) for any pair of circles C_1 and C_2 there exists a circle C such that i_C takes C_1 to C_2 .

- **1.4.** Two points $z, z' \in \mathbb{C}$ are symmetric with respect to a circle C if $i_C(z) = z'$. Show that any circle C' through a pair of symmetric with respect to C points z, z' is orthogonal to C.
- **1.5.** (a) Show that any Möbius map can be represented as a composition of transformations $z \to \frac{1}{z}$, $z \to z + a$ and $z \to bz$ for some $a, b \in \mathbb{C}$;
 - (b) show that Möbius map is a bijection from $\widehat{\mathbb{C}}$ to $\widehat{\mathbb{C}}$;
 - (c) show that Möbius maps form a group;
 - (d) show that any Möbius transformation takes lines and circles to lines and circles.
- 1.6. (a) Let (u₁, u₂, u₃) be a triple of points of C. Find a Möbius map g, such that g(u₁) = 0, g(u₂) = 1, g(u₃) = ∞.
 (b) Show that if a Möbius map fixes at least three non-collinear points then it is the identity map.
- **1.7.** (a) Find all Möbius maps that preserve the real axis;
 - (b) Find all Möbius maps that preserve the unit disk |z| < 1.
 - (c) Find all Möbius maps that take the upper half-plane Im z > 0 to the unit disk $|z| \leq 1$.
- **1.8.** (\star) Show that Möbius transformations preserve cross ratio

$$[z_1, z_2, z_3, z_4] = \frac{z_3 - z_1}{z_3 - z_2} : \frac{z_4 - z_1}{z_4 - z_2}$$

of four points.

- **1.9.** (\star) Show that inversions (and Möbius transformations) preserve angles between lines and circles.
- **1.10.** A function $f: D \to \mathbb{C}$ is antiholomorphic if f is \mathbb{R} -differentiable in D and $\frac{\partial f}{\partial z} = 0$. Show that f = u + iv is antiholomorphic if and only if $\overline{f} = u - iv$ is holomorphic.
- **1.11.** Show that a composition of holomorphic functions is holomorphic.
- **1.12.** Let f be holomorphic. Show that
 - (a) if |f(z)| is constant then f is constant;
 - (b) if f(z) is real for every $z \in D$ then f is constant.
- **1.13.** Show that f(z) is holomorphic in D if and only if $\overline{f(z)}$ is holomorphic in \overline{D} .
- **1.14.** Show that a harmonic function u satisfies the equation

$$\frac{\partial^2 u}{\partial z \partial \bar{z}} = 0$$