Introductory Complex Analysis, Homework 2

Due Date: Friday, September 30, in class.

Problems marked (\star) are bonus ones.

2.1. Determine the radii of convergence of the following power series:

(a)
$$\sum_{n=0}^{\infty} n^p z^n$$
; (b) $\sum_{n=0}^{\infty} n! z^n$; (c) $\sum_{n=1}^{\infty} (n+i) z^n$; (d) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} z^n$; (e) $\sum_{n=1}^{\infty} \left(\frac{z}{\ln z}\right)^n$; (f) $\sum_{n=1}^{\infty} \frac{z^{2n-1}}{2n-1}$; (g) $\sum_{n=0}^{\infty} z^{n!}$

2.2. For which $z \in \mathbb{C}$ the following series converge?

(a)
$$\sum_{n=1}^{\infty} \left(\frac{z}{1+z}\right)^n$$
; (b) $\sum_{n=1}^{\infty} \frac{z^n}{1+z^{2n}}$

2.3. (\star) (a) Consider a complex polynomial

$$p(z) = \sum_{k=0}^{d} a_k z^k$$

as a power series expansion around the origin. Express p as a power series around some point $w \neq 0$.

(b) Let f be a rational function

$$f(z) = \frac{3z^4 + z^3 + 2z^2 + 7}{z(z-1)}$$

Express f explicitly as a power series around z = 2. Find the convergency radius.

(c) Write down an algorithm to express as a power series an arbitrary rational map f = p/q with two polynomials p and q, around any point $w \in \mathbb{C}$ with $q(w) \neq 0$.

2.4. Show equivalence of two definitions of the exponent:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$
 and $e^{z} = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^{n}$

2.5. Define hyperbolic trigonometric functions

$$\sinh z = \frac{e^z - e^{-z}}{2}$$
 and $\cosh z = \frac{e^z + e^{-z}}{2}$

- (a) Express them through $\cos iz$ and $\sin iz$.
- (b) Express $|\cos z|^2$ and $|\sin z|^2$ in terms of trigonometric functions of x and y (for z = x + iy).
- **2.6.** Show that $\sin^2 z + \cos^2 z = 1$ and $\cos 2z = 2\cos^2 z 1$.

2.7. For every of the functions $\sin z$, $\cos z$, $\tan z$ find all the points $z \in \mathbb{C}$ where the functions are

(a) real;

(b) purely imaginary.

- **2.8.** For functions $f(z) = \sin z$, $\tan z$, $\cot z$ find their periods and maximal domains on which f is injective.
- **2.9.** Find the image of horizontal line y = b and vertical line x = a under the map
 - (a) $z \to e^z$;
 - (b) $z \to \cos z$

for every $a, b \in \mathbb{R}$.

Fall Term 2011