Introductory Complex Analysis, Homework 2

Due Date: Friday, September 30, in class.
Problems marked (\star) are bonus ones.
2.1. Determine the radii of convergence of the following power series:
(a) $\sum_{n=0}^{\infty} n^{p} z^{n}$;
(b) $\sum_{n=0}^{\infty} n!z^{n} ;$
(c) $\sum_{n=1}^{\infty}(n+i) z^{n} ;$
(d) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}} z^{n} ;$
(e) $\sum_{n=1}^{\infty}\left(\frac{z}{\ln z}\right)^{n}$;
(f) $\sum_{n=1}^{\infty} \frac{z^{2 n-1}}{2 n-1}$;
(g) $\sum_{n=0}^{\infty} z^{n!}$.
2.2. For which $z \in \mathbb{C}$ the following series converge?
(a) $\sum_{n=1}^{\infty}\left(\frac{z}{1+z}\right)^{n}$;
(b) $\sum_{n=1}^{\infty} \frac{z^{n}}{1+z^{2 n}}$.
2.3. (\star) (a) Consider a complex polynomial

$$
p(z)=\sum_{k=0}^{d} a_{k} z^{k}
$$

as a power series expansion around the origin. Express p as a power series around some point $w \neq 0$.
(b) Let f be a rational function

$$
f(z)=\frac{3 z^{4}+z^{3}+2 z^{2}+7}{z(z-1)}
$$

Express f explicitly as a power series around $z=2$. Find the convergency radius.
(c) Write down an algorithm to express as a power series an arbitrary rational map $f=p / q$ with two polynomials p and q, around any point $w \in \mathbb{C}$ with $q(w) \neq 0$.
2.4. Show equivalence of two definitions of the exponent:

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \quad \text { and } \quad e^{z}=\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}
$$

2.5. Define hyperbolic trigonometric functions

$$
\sinh z=\frac{e^{z}-e^{-z}}{2} \quad \text { and } \quad \cosh z=\frac{e^{z}+e^{-z}}{2}
$$

(a) Express them through $\cos i z$ and $\sin i z$.
(b) Express $|\cos z|^{2}$ and $|\sin z|^{2}$ in terms of trigonometric functions of x and y (for $z=x+i y$).
2.6. Show that $\sin ^{2} z+\cos ^{2} z=1$ and $\cos 2 z=2 \cos ^{2} z-1$.
2.7. For every of the functions $\sin z, \cos z, \tan z$ find all the points $z \in \mathbb{C}$ where the functions are
(a) real;
(b) purely imaginary.
2.8. For functions $f(z)=\sin z, \tan z, \cot z$ find their periods and maximal domains on which f is injective.
2.9. Find the image of horizontal line $y=b$ and vertical line $x=a$ under the map
(a) $z \rightarrow e^{z}$;
(b) $z \rightarrow \cos z$
for every $a, b \in \mathbb{R}$.

