Introductory Complex Analysis, Homework 3

Due Date: Friday, October 14, in class.

Problems marked (\star) are bonus ones.

- 3.1. Construct explicitely a function mapping conformally and bijectively
 - (a) the angle $\{z \in \mathbb{C} \mid -\pi/3 < z < \pi/3\}$ onto the upper halfplane;
 - (b) the half-disk $\{z \in \mathbb{C} \mid |z| < 1, \text{ Im } z > 0\}$ onto the unit disk;
 - (c) the unit disk onto the strip $\{z \in \mathbb{C} \mid 0 < \text{Im } z < 1\}$;
 - (d) the domain $\{z \in \mathbb{C} \mid |z| > 1, \text{ Im } z > 0, \text{ Re } z > 0\}$ onto the positive quadrant $\{z \in \mathbb{C} \mid \text{Im } z > 0, \text{ Re } z > 0\}$;
 - (e)(\star) the domain $\{z \in \mathbb{C} \mid |z| < 1, \text{ Im } z > 0, z \notin [i/2, i]\}$ onto the upper halfplane;
- **3.2.** Let $f:D\to\mathbb{C}$ be holomorphic and bijective onto the image f(D). Show that $f^{-1}:f(D)\to D$ is also holomorphic.
- **3.3.** Let f(z) be holomorphic in domain D, and $z \notin \overline{D}$. Show that

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} \, d\xi = 0$$

3.4. Compute the following integrals:

(a)
$$\int_{[0,1+i]} y \, dz;$$
 (b) $\int_{|z|=1} y \, dz.$

3.5. Compute the following integrals:

(a)
$$\int_{|z|=2} \frac{dz}{z^2 - 1}$$
; (b) $\int_{|z-3i|=3} \frac{dz}{z^2 + 1}$; (c) $\int_{|z-1-i|=2} \frac{dz}{(z-1)^2(z^2 + 1)}$;

- **3.6.** Let D be a disk, and let $u:D\to\mathbb{R}$ be a harmonic function.
 - (a) Show that there exists a unique (up to constant) holomorphic in D function f with Re f = u.
 - (b) Let $z \in D$, and the disk $|\xi z| \le r$ is contained in D. Prove the *Mean Value Theorem* for harmonic functions:

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt$$

3.7. (\star) Let D be a disk in \mathbb{C} , f and g are holomorphic functions in D, and

$$f^2 + q^2 = 1$$

Prove that there exists a holomorphic function h(z) such that

$$f(z) = \cos h(z), \qquad g(z) = \sin h(z)$$