## Introductory Complex Analysis, Homework 4

Due Date: Friday, October 28, in class.
Problems marked $(\star)$ are bonus ones.
4.1. Let $P_{1}, \ldots, P_{n}$ be points lying in the exterior of a circle centered at $O$. Show that there is a point $P$ on the circle such that the product of distances from $P$ to $P_{1}, \ldots, P_{n}$ is greater than $O P_{1} \cdot \ldots \cdot O P_{n}$, as well as point $P^{\prime}$ for which this product is less than $O P_{1} \cdot \ldots \cdot O P_{n}$.
4.2. Let $D$ be an open subset of $\mathbb{C}$, and suppose $f, g: D \rightarrow \mathbb{C}$ are holomorphic and $f g \equiv 0$ on $D$. Does it follow that $f \equiv 0$ or $g \equiv 0$ on $D$ ? If yes: prove it; if no: give a counterexample and state and prove a condition on $D$ under which this is true.
4.3. (a) Suppose $f(z)$ has an isolated singularity at $z_{0}$. What kind of isolated singularity can $\exp (f(z))$ have at $z_{0}$ ?
(b) Let $z_{0}$ be an essential singularity of $f$. What is the type of singularity of $1 / f$ at $z_{0}$ ?
4.4. For the following functions, determine all their isolated singularities (including at the point $\infty$ ) and their types. For a removable singularity determine what value can be "filled in", and for a pole, determine its order:
(a) $1 /\left(1-e^{z}\right)$;
(b) $\sin \left[\pi /\left(1+z^{2}\right)\right]$;
(c) $\cos (1 / z)+e^{3 z}$;
(d) $\left(z^{2}-\sin \left(z^{2}\right)\right) / z^{5}$.
4.5. Find maximal $R$ such that the function $f(z)=z / \sin z$ in $|z|<R$ can be represented as a sum of its Taylor series centered at 0 .
4.6. Show the following properties of entire function $f$ :
(a) if $f$ is not constant then $\lim _{r \rightarrow \infty} \max _{|z|=r}|f(z)|=+\infty$;
(b) if $\max _{|z|=r}|f(z)| \leq A r^{n}+B$ for some constants $A, B, N$ and any $r>0$, then $f$ is a polynomial of degree at most $N$;
(c) if $\operatorname{Re} f(z) \geq 0$ for all $z \in \mathbb{C}$, the $f$ is constant;
(d) if $\lim _{z \rightarrow \infty} f(z)=\infty$ then the set $\{z \in \mathbb{C} \mid f(z)=0\}$ is not empty.
(e) prove Fundamental Theorem of Algebra: every polynomial has a root in $\mathbb{C}$.
4.7. The expression

$$
\{f, z\}=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

is called the Schwarzian derivative of $f$. Let $f$ have a multiple zero or pole at $z_{0}$. Compute the leading term of the the Laurent series of $\{f, z\}$ centered at $z_{0}$.
4.8. ( $\star$ ) Show that

$$
\int_{0}^{\infty} \cos x^{2} d x=\sqrt{\pi / 8}=\int_{0}^{\infty} \sin x^{2} d x
$$

Hint: integrate along the boundary of a domain with vertices $0, R$, and $R e^{i \pi / 4}$, and use the fact that $\int_{0}^{\infty} e^{-x^{2}}=\sqrt{\pi} / 2$.

