Introductory Complex Analysis, Homework 5

Due Date: Friday, November 11, in class.
Problems marked (\star) are bonus ones.
5.1. Define $f(z)=1+z^{2}+z^{4}+z^{8}+\cdots=1+\sum_{n=1}^{\infty} z^{2^{n}}$.
(a) Show that f is holomorphic in the unit disk $|z|<1$;
(b) show that $f(z) \rightarrow \infty$ as z approaches any point of type $e^{2 \pi i / 2^{n}}$;
(c) show that every point of the circle $|z|=1$ is singular.
5.2. Let radius of convergence of a power series $f(z)=\sum c_{n}\left(z-z_{0}\right)^{n}$ be equal to R, and assume that the function $f(z)$ has a pole at some w_{0} with $\left|w_{0}-z_{0}\right|=R$. Show that for every $w,\left|w-z_{0}\right|=R$, the series $\sum c_{n}\left(w-z_{0}\right)^{n}$ does not converge absolutely.
5.3. Find poles and compute residues of the following functions:
(a) $\frac{1}{z^{2}+5 z+6}$;
(b) $\frac{1}{\left(z^{2}-1\right)^{2}}$;
(c) $\frac{1}{\sin ^{2} z}$;
(d) $\cot z$;
(e) $\frac{1}{z^{m}(1-z)^{n}}(m, n \in \mathbb{N})$.
5.4. Evaluate the following integrals:
(a) $\int_{0}^{\pi / 2} \frac{d x}{a+\cos ^{2} x},|a|>1$;
(b) $\int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+5 x^{2}+6}$;
(c) $\int_{0}^{\infty} \frac{x \sin x d x}{x^{2}+a^{2}}, a \in \mathbb{R}$.
5.5. (\star) (a) Show that $\int_{-\infty}^{\infty} \frac{d x}{\cosh x}=\pi$

Hint: integrate over the boundary of rectangle with vertices $\pm R, \pm R+i \pi$.
(b) Compute $\int_{0}^{\infty} \frac{x^{\alpha} d x}{x^{2}+1}$, where $0<\alpha<1$.

Danger: z^{α} is not single-valued!
5.6. (a) How many roots of the polynomial $z^{7}-2 z^{5}+6 z^{3}-z+1$ lie in the unit disk?
(b) How many roots of the polynomial $z^{4}+10 z+1$ have their modulud between 1 and 2 ?
(c) How many roots of the polynomial $z^{4}+8 z^{3}+3 z^{2}+8 z+3$ have positive real part?
5.7. Let f be holomorphic in the unit disk and continuous in its closure. Show that

$$
|f(0)| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right| d t
$$

Hint: recall the mean value theorem.
5.8. (\star) Let f, g, h be holomorphic non-constant in some domain D. Show that the function

$$
F(z)=|f(z)|+|g(z)|+|h(z)|
$$

has no local maximum in D.
5.9. Let M be the set of all holomorphic maps f from the unit disk to itself (not obligatory surjective) satisfying $f(0)=2 / 3$. Find $\sup _{f \in M}\left|f^{\prime}(0)\right|$. Hint: use Schwarz Lemma.

