Introductory Complex Analysis, Homework 5

Due Date: Friday, November 11, in class.

Problems marked (\star) are bonus ones.

- **5.1.** Define $f(z) = 1 + z^2 + z^4 + z^8 + \dots = 1 + \sum_{n=1}^{\infty} z^{2^n}$.
 - (a) Show that f is holomorphic in the unit disk |z| < 1;
 - (b) show that $f(z) \to \infty$ as z approaches any point of type $e^{2\pi i/2^n}$;
 - (c) show that every point of the circle |z| = 1 is singular.
- **5.2.** Let radius of convergence of a power series $f(z) = \sum c_n (z z_0)^n$ be equal to R, and assume that the function f(z) has a pole at some w_0 with $|w_0 z_0| = R$. Show that for every w, $|w z_0| = R$, the series $\sum c_n (w z_0)^n$ does not converge absolutely.
- 5.3. Find poles and compute residues of the following functions:

(a)
$$\frac{1}{z^2 + 5z + 6}$$
; (b) $\frac{1}{(z^2 - 1)^2}$; (c) $\frac{1}{\sin^2 z}$; (d) $\cot z$; (e) $\frac{1}{z^m (1 - z)^n}$ $(m, n \in \mathbb{N})$.

5.4. Evaluate the following integrals:

(a)
$$\int_{0}^{\pi/2} \frac{dx}{a + \cos^2 x}$$
, $|a| > 1$; (b) $\int_{0}^{\infty} \frac{x^2 dx}{x^4 + 5x^2 + 6}$; (c) $\int_{0}^{\infty} \frac{x \sin x dx}{x^2 + a^2}$, $a \in \mathbb{R}$.
(*) (a) Show that $\int_{0}^{\infty} \frac{dx}{x^2 + a^2} = \pi$

5.5. (*) (a) Show that $\int_{-\infty}^{\infty} \frac{dx}{\cosh x} = \pi$

Hint: integrate over the boundary of rectangle with vertices $\pm R$, $\pm R + i\pi$.

(b) Compute
$$\int_{0}^{\infty} \frac{x^{\alpha} dx}{x^{2}+1}$$
, where $0 < \alpha < 1$.

Danger: z^{α} is not single-valued!

- **5.6.** (a) How many roots of the polynomial $z^7 2z^5 + 6z^3 z + 1$ lie in the unit disk?
 - (b) How many roots of the polynomial $z^4 + 10z + 1$ have their modulud between 1 and 2?
 - (c) How many roots of the polynomial $z^4 + 8z^3 + 3z^2 + 8z + 3$ have positive real part?
- **5.7.** Let f be holomorphic in the unit disk and continuous in its closure. Show that

$$|f(0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})| \, dt$$

Hint: recall the mean value theorem.

5.8. (\star) Let f, g, h be holomorphic non-constant in some domain D. Show that the function

$$F(z) = |f(z)| + |g(z)| + |h(z)|$$

has no local maximum in D.

5.9. Let M be the set of all holomorphic maps f from the unit disk to itself (not obligatory surjective) satisfying f(0) = 2/3. Find $\sup_{f \in M} |f'(0)|$. *Hint:* use Schwarz Lemma.