Introductory Complex Analysis, Homework 6

Due Date: Friday, November 25, in class.
Problems marked (\star) are bonus ones.
6.1. Let $\{f\}$ be a locally uniformly bounded family of holomorphic functions on D. Show that $\left\{f^{\prime}\right\}$ is also locally uniformly bounded.
6.2. Show that the functional J on the set of holomorphic functions defined by $J(f)=f^{(p)}\left(z_{0}\right)$ is continuous.
6.3. Show that the series

$$
\sum_{n=0}^{\infty} \frac{1}{z^{n}+z^{-n}}
$$

converges for $|z|<1$ and for $|z|>1$ to two distinct holomorphic functions.
6.4. Riemann Mapping Theorem.

Let $D \subset \mathbb{C}$ be a simply-connected domain which is not the whole plane. Then there exists a conformal map from D to the unit disk Δ. The map is unique up to Mobius transformation of Δ.
First, let us prove that there exist univalent functions from D to Δ.
(a) Let $a, b \notin D, a, b \in \hat{\mathbb{C}}$. Define function $f(z)=\sqrt{\frac{z-a}{z-b}}$. Show that two germs $\left(U_{1}, f_{1}\right),\left(U_{2}, f_{2}\right)$ of f have analytic continuations f_{1}, f_{2} in $D, f_{1}=-f_{2}$, with f_{1}, f_{2} being univalent, and $f_{1}(D) \cap f_{2}(D)=\emptyset$.
(b) Let $W=\left\{w \in \mathbb{C}| | w-w_{0} \mid \leq r\right\}$ be any disk contained in $f_{2}(D)$ (Open Mapping Theorem). Show that the function $\tilde{f}=\frac{r}{f_{1}(z)-w_{0}}$ is holomorphic in D, and $|\tilde{f}(z)|<1$ for any $z \in D$.
(c) Fix $z_{0} \in D$. Show that the family of holomorphic functions $\{f\}=\left\{f: D \rightarrow \Delta \mid f\right.$ is univalent, $\left.f\left(z_{0}\right)=0\right\}$ is non-empty.

Now find the required function.
(d) Show that $\{f\}$ is normal.
(e) Show that there is function $f_{0} \in\{f\}$ such that $0<\left|f_{0}^{\prime}\left(z_{0}\right)\right| \geq\left|g^{\prime}\left(z_{0}\right)\right|$ for every $g \in\{f\}$.

Finally, prove that $f_{0}(D)=\Delta$. Assume that $c \in \Delta \backslash f_{0}(D)$.
(f) Show that a germ of function $g(z)=\sqrt{\frac{f_{0}(z)-c}{1-\bar{c} f_{0}(z)}}$ has an analytic continuation g_{1} in D.
(g) Show that the function $h(z)=\frac{g_{1}(z)-g_{1}\left(z_{0}\right)}{1-\overline{g_{1}\left(z_{0}\right)} g_{1}(z)}$ belongs to $\{f\}$, and $\left|f_{0}^{\prime}\left(z_{0}\right)\right|<\left|h^{\prime}\left(z_{0}\right)\right|$.
6.5. Euler Gamma function is defined by

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

(a) Show that functions $F_{n}(z)=\int_{1 / n}^{\infty} e^{-t} t^{z-1} d t$ are holomorphic in \mathbb{C}.
(b) Show that $\Gamma(z)$ is holomorphic in the right halfplane $\operatorname{Re} z>0$.
(c) Show that for $\operatorname{Re} z>0$ Gamma function satisfies the equation $\Gamma(z+1)=z \Gamma(z)$.
(d) Prove that $\Gamma(z)$ has an analytic continuation to $\mathbb{C} \backslash\{0,-1,-2, \ldots\}$.

