Jacobs University School of Engineering and Science

Linear Algebra I, Homework 1

Due Date: Friday, September 16, in class.

Problems marked (\star) are bonus ones.

1.1. Let F be an field, $a, b, c, d \in F$. Show that

(a) ((a + b) + c) + d = a + (b + (c + d));

- (b) -(a+b) = (-a) + (-b);
- (c) the equations a + x = b and ax = b have a unique solution in F (for $a \neq 0$);
- (d) (-1)a = -a.
- **1.2.** Let F be a field, and $F' \subset F$ is a subfield. Show that F is an F'-vector space.
- **1.3.** Which of the following sets are \mathbb{R} -vector spaces?
 - (a) Polynomials with real coefficients of degree at most n;
 - (b) continuous functions f(x) on \mathbb{R} with f(0) = 0;
 - (c) continuous functions f(x) on \mathbb{R} with f(0) = 1;
 - (d) unbounded functions on \mathbb{R} ;
 - (e) arithmetic progressions with real entries;
 - (f) geometric progressions with real entries;
 - (g) infinite sequences of real numbers with finitely many non-zero elements;

(*) the set of functions $\{f(x) = a\sin(x+c) \mid a, c \in \mathbb{R}\}.$

- **1.4.** Which of the following sets are \mathbb{Q} -vector spaces?
 - (a) Real numbers;
 - (b) rational numbers with denominator $\leq N$;
 - (c) rational numbers with denominator $\geq N$;
 - (d) complex numbers with rational real and imaginary parts.
- **1.5.** Are the following sets of vectors linearly independent (over \mathbb{R})?
 - (a) $\{(1, -1, 0), (-1, 0, 1), (0, 1, -1)\} \subset \mathbb{R}^3;$
 - (b) $\{(1,1,0), (1,0,1), (0,1,1)\} \subset \mathbb{R}^3;$

(c) $\{x^3 + x^2, x^2 - 3x + 1, x^3 - 2x^2 + 1\} \subset \mathbb{R}[x]$, where $\mathbb{R}[x]$ is the space of polynomials with \mathbb{R} -coefficients;

- (d) $\{\sin x, \sin 2x, \dots, \sin nx\}$ as real functions.
- **1.6.** For which λ
 - (a) linear independence of vectors $\{u, v\}$ implies linear independence of vectors $\{\lambda u, \lambda v\}$?
 - (b) linear independence of vectors $\{v_1, \ldots, v_n\}$ implies linear independence of vectors

 $\{v_1 + v_2, v_2 + v_3, \dots, v_{n-1} + v_n, v_n + \lambda v_1\}$?

1.7. (*) Let V be an abelian group of all n-tuples $(z_1, \ldots, z_n), z_i \in \mathbb{C}$. If $\alpha \in \mathbb{C}$, define

$$\alpha \circ (z_1, \ldots, z_n) = (\alpha \bar{z}_1, \ldots, \alpha \bar{z}_n)$$

Is V a \mathbb{C} -vector space (with respect to operations "+" and " \circ ")?