Linear Algebra I, Homework 1

Due Date: Friday, September 16, in class.

Problems marked (\star) are bonus ones.
1.1. Let F be an field, $a, b, c, d \in F$. Show that
(a) $((a+b)+c)+d=a+(b+(c+d))$;
(b) $-(a+b)=(-a)+(-b)$;
(c) the equations $a+x=b$ and $a x=b$ have a unique solution in $F($ for $a \neq 0)$;
(d) $(-1) a=-a$.
1.2. Let F be a field, and $F^{\prime} \subset F$ is a subfield. Show that F is an F^{\prime}-vector space.
1.3. Which of the following sets are \mathbb{R}-vector spaces?
(a) Polynomials with real coefficients of degree at most n;
(b) continuous functions $f(x)$ on \mathbb{R} with $f(0)=0$;
(c) continuous functions $f(x)$ on \mathbb{R} with $f(0)=1$;
(d) unbounded functions on \mathbb{R};
(e) arithmetic progressions with real entries;
(f) geometric progressions with real entries;
(g) infinite sequences of real numbers with finitely many non-zero elements;
(\star) the set of functions $\{f(x)=a \sin (x+c) \mid a, c \in \mathbb{R}\}$.
1.4. Which of the following sets are \mathbb{Q}-vector spaces?
(a) Real numbers;
(b) rational numbers with denominator $\leq N$;
(c) rational numbers with denominator $\geq N$;
(d) complex numbers with rational real and imaginary parts.
1.5. Are the following sets of vectors linearly independent (over \mathbb{R})?
(a) $\{(1,-1,0),(-1,0,1),(0,1,-1)\} \subset \mathbb{R}^{3}$;
(b) $\{(1,1,0),(1,0,1),(0,1,1)\} \subset \mathbb{R}^{3}$;
(c) $\left\{x^{3}+x^{2}, x^{2}-3 x+1, x^{3}-2 x^{2}+1\right\} \subset \mathbb{R}[x]$, where $\mathbb{R}[x]$ is the space of polynomials with \mathbb{R}-coefficients;
(d) $\{\sin x, \sin 2 x, \ldots, \sin n x\}$ as real functions.
1.6. For which λ
(a) linear independence of vectors $\{u, v\}$ implies linear independence of vectors $\{\lambda u, \lambda v\}$?
(b) linear independence of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ implies linear independence of vectors

$$
\left\{v_{1}+v_{2}, v_{2}+v_{3}, \ldots, v_{n-1}+v_{n}, v_{n}+\lambda v_{1}\right\} ?
$$

1.7. (\star) Let V be an abelian group of all n-tuples $\left(z_{1}, \ldots, z_{n}\right), z_{i} \in \mathbb{C}$. If $\alpha \in \mathbb{C}$, define

$$
\alpha \circ\left(z_{1}, \ldots, z_{n}\right)=\left(\alpha \bar{z}_{1}, \ldots, \alpha \bar{z}_{n}\right)
$$

Is V a \mathbb{C}-vector space (with respect to operations ${ }^{\prime \prime}+{ }^{\prime \prime}$ and $\left.{ }^{\prime \prime} 0^{\prime \prime}\right)$?

