Linear Algebra I, Homework 10

Due Date: Friday, December 2, in class.

Problems marked (\star) are bonus ones.
10.1. Compute exponent of the following matrices
(a) $\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right)$
(c) $\left(\begin{array}{lll}4 & 2 & -5 \\ 6 & 4 & -9 \\ 5 & 3 & -7\end{array}\right)$
10.2. Compute minimal polynomials of the following matrices

$$
(a)\left(\begin{array}{cccc}
6 & -9 & 5 & 4 \\
7 & -13 & 8 & 7 \\
8 & -17 & 11 & 8 \\
1 & -2 & 1 & 3
\end{array}\right) \quad(b)\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

10.3. Solve the following system of linear differential equations

$$
\left\{\begin{array}{l}
\mathrm{x}^{\prime}(t)=\mathrm{x}(\mathrm{t}) \\
\mathrm{y}^{\prime}(t)=\mathrm{x}(\mathrm{t})-\mathrm{y}(\mathrm{t}) \quad-3 \mathrm{z}(\mathrm{t}) \\
\mathrm{z}^{\prime}(t)=-\mathrm{x}(\mathrm{t})+2 \mathrm{y}(\mathrm{t}) \\
+5 \mathrm{z}(\mathrm{t})
\end{array}\right.
$$

with initial conditions

$$
x(0)=1, \quad y(0)=1, \quad z(0)=2
$$

10.4. Let $f \in \operatorname{End}(V),\|f\|<1$. Define

$$
\log (\mathrm{id}+f)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{f^{n}}{n}
$$

Show that
(a) $\log (\mathrm{id}+f)$ is well defined (i.e. series converges);
(b) $e^{\log (\mathrm{id}+f)}=\mathrm{id}+f$.
10.5. Define linear Lie algebras $\mathfrak{u}(n)$ and $\mathfrak{s u}(n)$ by

$$
\mathfrak{u}(n)=\left\{A \in \mathrm{M}_{n}(\mathbb{C}) \mid A+\bar{A}^{T}=0\right\}, \quad \mathfrak{s u}(n)=\mathfrak{u}(n) \cap \mathfrak{s l}(n)
$$

Show that exponential map takes $\mathfrak{u}(n)$ and $\mathfrak{s u}(n)$ to $U(n)$ and $S U(n)$ respectively.
10.6. (\star) Let $f \in \operatorname{End}(V), \lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of f. Show that $\|f\| \geq\left|\lambda_{i}\right|$ for every i.

